Skip to main content
Log in

Probiotic abilities of riboflavin-overproducing Lactobacillus strains: a novel promising application of probiotics

  • Applied microbial and cell physiology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The probiotic potential of Lactobacillus plantarum and Lactobacillus fermentum strains, capable of overproducing riboflavin, was investigated. The riboflavin production was quantified in co-cultures of lactobacilli and human intestinal epithelial cells, and the riboflavin overproduction ability was confirmed. When milk and yogurt were used as carrier matrices, L. plantarum and L. fermentum strains displayed a significant ability to survive through simulated gastrointestinal transit. Adhesion was studied on both biotic and abiotic surfaces. Both strains adhered strongly on Caco-2 cells, negatively influenced the adhesion of Escherichia coli O157:H7, and strongly inhibited the growth of three reference pathogenic microbial strains. Resistance to major antibiotics and potential hemolytic activity were assayed. Overall, this study reveals that these Lactobacillus stains are endowed with promising probiotic properties and thus are candidates for the development of novel functional food which would be both enriched in riboflavin and induce additional health benefits, including a potential in situ riboflavin production, once the microorganisms colonize the host intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bezkorovainy A (2001) Probiotics: determinants of survival and growth in the gut. Am J Clin Nutr 73:399S–405S

    CAS  PubMed  Google Scholar 

  • Both E, György É, Kibédi-Szabó CZ, Tamás É, Ábrahám B, Miklóssy I, Lányi S (2010) Acid and bile tolerance, adhesion to epithelial cells of probiotic microorganisms. UPB Sci Bull Series B 72:37–44

    Google Scholar 

  • Bove P, Russo P, Capozzi V, Gallone A, Spano G, Fiocco D (2013) Lactobacillus plantarum passage through an oro-gastro-intestinal tract simulator: carrier matrix effect and transcriptional analysis of genes associated to stress and probiosis. Microbiol Res 168:351–359

    Article  CAS  PubMed  Google Scholar 

  • Burgess C, O’Connell-Motherway M, Sybesma W, Hugenholtz J, van Sinderen D (2004) Riboflavin production in Lactococcus lactis: potential for in situ production of vitamin-enriched foods? Appl Environ Microbiol 70:5769–5777

  • Burgess CM, Smid EJ, Rutten G, van Sinderen D (2006a) A general method for selection of riboflavin-overproducing food grade micro-organisms. Microb Cell Fact 5:24–35

    Article  PubMed Central  PubMed  Google Scholar 

  • Burgess CM, Slotboom DJ, Geertsma ER, Duurkens RH, Poolman B, van Sinderen D (2006b) The riboflavin transporter RibU in Lactococcus lactis: molecular characterization of gene expression and the transport mechanism. J Bacteriol 188:2752–2760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Candela M, Seibold G, Vitali B, Lachenmaier S, Eikmanns BJ, Brigidi P (2005) Real-time PCR quantification of bacterial adhesion to Caco-2 cells: competition between bifidobacteria and enteropathogens. Res Microbiol 156:887–895

    Article  CAS  PubMed  Google Scholar 

  • Candela M, Perna F, Carnevali P, Vitali B, Ciati R, Gionchetti P, Rizzello F, Campieri M, Brigidi P (2008) Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production. Int J Food Microbiol 125:286–292

    Article  CAS  PubMed  Google Scholar 

  • Capozzi V, Russo P, Dueñas MT, López P, Spano G (2012) Lactic acid bacteria producing B-group vitamins: a great potential for functional cereals products. Appl Microbiol Biotechnol 96:1383–1394

    Article  CAS  PubMed  Google Scholar 

  • de Vrese M, Schrezenmeir J (2008) Probiotics, prebiotics, and synbiotics. Adv Biochem Eng Biotechnol 11:1–66

    Google Scholar 

  • Delcenserie V, Martel D, Lamoureux M, Amiot J, Boutin Y, Roy D (2008) Immunomodulatory effects of probiotics in the intestinal tract. Curr Iss Mol Biol 10:37–54

    CAS  Google Scholar 

  • Dunne C, O’Mahony L, Murphy L, Thornton G, Morrissey D, O'Halloran S, Feeney M, Flynn S, Fitzgerald G, Daly C, Kiely B, O'Sullivan GC, Shanahan F, Collins JK (2001) In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am J Clin Nutr 73:386S–392S

    CAS  PubMed  Google Scholar 

  • Elmer GW (2001) Probiotics: “living drugs”. Am J Health-Syst Pharm 58:1101–1109

    CAS  PubMed  Google Scholar 

  • European Food Safety Authority (EFSA) (2012) Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). EFSA J 10:2740–2749

    Google Scholar 

  • FAO/WHO (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Córdoba, Argentina. Food and Agriculture Organization of United Nations and World Health Organization Working Expert Consultation Report

  • FAO/WHO (2002) Guidelines for the evaluation of probiotics in food. London, Ontario: Food and Agriculture Organization of United Nations and World Health Organization Working Group Report

  • Fernández de Palencia P, López P, Corbi AL, Peláez C, Requena T (2008) Probiotic strains: survival under simulated gastrointestinal conditions, in vitro adhesion to Caco-2 cells and effect on cytokine secretion. Eur Food Res Technol 227:1475–1484

  • Fernández MF, Boris S, Barbés C (2003) Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract. J Appl Microbiol 94:449–455

    Article  PubMed  Google Scholar 

  • Gagnon M, Kheadr EE, Le Blay G, Fliss I (2004) In vitro inhibition of Escherichia coli O157:H7 by bifidobacterial strains of human origin. Int J Food Microbiol 92:69–78

  • Gaudana SB, Dhanani AS, Bagchi T (2010) Probiotic attributes of Lactobacillus strains isolated from food and of human origin. Br J Nutr 103:1620–1628

    Article  CAS  PubMed  Google Scholar 

  • Hill MJ (1997) Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev 6:43–45

    Article  Google Scholar 

  • Holzapfel WH, Haberer P, Snel J, Schillinger U, Huis in’t Veld JHJ (1998) Overview of gut flora and probiotics. Int J Food Microbiol 41:85–101

    Article  CAS  PubMed  Google Scholar 

  • Hooper LV, Midvedt T, Gordon JI (2002) How host microbial interactions shape the nutrient environment of the mammalian intestine. Ann Rev Nutr 22:283–273

    Article  CAS  Google Scholar 

  • Jakobsen J (2008) Optimisation of the determination of thiamin, 2-(1-hydroxyethyl)thiamin, and riboflavin in food samples by use of HPLC. Food Chem 106:1209–1217

    Article  CAS  Google Scholar 

  • Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MWEJ, Stiekema W, Lankhorst RMK, Bron PA, Hoffer SM, Groot MNN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A 100:1990–1995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koo OK, Amalaradjou MAR, Bhunia AK (2012) Recombinant probiotic expressing Listeria adhesion protein attenuates Listeria monocytogenes virulence in vitro. PLoS One 7:e29277

  • LeBlanc JG, Sybesma W, Starrenburg M, Sesma F, deVos WM, de Giori GS, Hugenholtz J (2010a) Supplementation with engineered Lactococcus lactis improves the folate status in deficient rats. Nutrition 26:835–841

    Article  CAS  PubMed  Google Scholar 

  • LeBlanc JG, Taranto MP, Molina V, Sesma F (2010b) B-group vitamins production by probiotic lactic acid bacteria. In: Mozzi F, Raya R, Vignolo G (eds) Biotechnology of lactic acid bacteria: novel applications. Wiley-Blackwell, Ames

    Google Scholar 

  • LeBlanc JG, Lainõ JE, Juarez del Valle M, Vannini V, van Sinderen D, Taranto MP, Font de Valdez G, Savoy de Giori G, Sesma F (2011) B-group vitamin production by lactic acid bacteria-current knowledge and potential applications. J Appl Microbiol 111:1297–1309

    Article  CAS  PubMed  Google Scholar 

  • Lee YK, Lim CY, Teng WL, Ouwehand AC, Tuomola EM, Salminen S (2000) Quantitative approach in the study of adhesion of lactic acid bacteria to intestinal cells and their competition with enterobacteria. Appl Environ Microbiol 66:3692–3697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee Y-K, Puong K-Y, Ouwehand AC, Salminen S (2003) Displacement of bacterial pathogens from mucus and Caco-2 cell surface by lactobacilli. J Med Microbiol 52:925-930

  • Levine MM (1987) Escherichia coli that cause diarrhea: enterotoxigenic, enteropathogenic, enteroinvasive, enterohemorrhagic, and enteroadherent. J Infect Dis 155:377–389

    Article  CAS  PubMed  Google Scholar 

  • Maccaferri S, Klinder A, Brigidi P, Cavina P, Costabile A (2012) Potential probiotic Kluyveromyces marxianus B0399 modulates the immune response in Caco-2 cells and peripheral blood mononuclear cells and impacts the human gut microbiota in an in vitro colonic model system. Appl Environ Microbiol 78:956–964

  • Macfarlane S, Dillon JF (2007) Microbial biofilms in the human gastrointestinal tract. J Appl Microbiol 102:1187–1196

    Article  CAS  PubMed  Google Scholar 

  • Maragkoudakis PA, Zoumpopoulou G, Miaris C, Kalantzopoulos G, Pot B, Tsakalidou E (2006) Probiotic potential of Lactobacillus strains isolated from dairy products. Int Dairy J 16:189–199

    Article  CAS  Google Scholar 

  • Marteau PR, de Vrese M, Cellier CJ, Schrezenmeir J (2001) Protection from gastrointestinal diseases with the use of probiotics. Am J Clin Nutr 73:430–436

    Google Scholar 

  • Mombelli B, Gismondo MR (2000) The use of probiotics in medical practice. Int J Antimicrob Agents 16:531–536

    Article  CAS  PubMed  Google Scholar 

  • Morelli L (2000) In vitro selection of probiotic lactobacilli: a critical appraisal. Curr Iss Intest Microbiol 1:59–67

    CAS  Google Scholar 

  • Patel RM, Lin PW (2010) Developmental biology of gut-probiotic interaction. Gut Microbes 1:186–195

    Article  PubMed Central  PubMed  Google Scholar 

  • Perelle S, Dilasser F, Grout J, Fach P (2004) Detection by 5′-nuclease PCR of Shiga-toxin producing Escherichia coli O26, O55, O91, O103, O111, O113, O145 and O157:H7, associated with the world’s most frequent clinical cases. Mol Cell Probes 18:185–192

    Article  CAS  PubMed  Google Scholar 

  • Piątek J, Gibas-Dorna M, Olejnik A, Krauss H, Wierzbicki K, Żukiewicz-Sobczak W, Głowacki M (2012) The viability and intestinal epithelial cell adhesion of probiotic strain combination—in vitro study. Ann Agric Environ Med 19:99–102

    PubMed  Google Scholar 

  • Pitino I, Randazzo CL, Cross KL, Parker ML, Bisignano C, Wickham MS, Mandalari G, Caggia C (2012) Survival of Lactobacillus rhamnosus strains inoculated in cheese matrix during simulated human digestion. Food Microbiol 31:57–63

    Article  CAS  PubMed  Google Scholar 

  • Pompei A, Cordisco L, Amaretti A, Zanoni S, Matteuzzi D, Rossi M (2007) Folate production by bifidobacteria as a potential probiotic property. Appl Environ Microbiol 73:179–185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rendueles O, Kaplan JB, Ghigol J-M (2013) Antibiofilm polysaccharides. Environ Microbiol 15:334–346

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Riley MA, Gordon DM (1999) The ecological role of bacteriocins in bacterial competition. Trends Microbiol 7:129–133

    Article  CAS  PubMed  Google Scholar 

  • Rossi M, Amaretti A, Raimondi S (2011) Folate production by probiotic bacteria. Nutrients 3:118–134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Russo P, López P, Capozzi V, Fernández de Palencia P, Dueñas MT, Spano G, Fiocco D (2012a) Beta-glucans improve growth, viability and colonization of probiotic microorganisms. Int J Mol Sci 13:6026–6039

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Russo P, Fernández de Palencia P, Romano A, Fernández M, Lucas P, Spano G, López P (2012b) Biogenic amine production by the wine Lactobacillus brevis IOEB 9809 in systems that partially mimic the gastrointestinal tract stress. BMC Microbiol 12:247–256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Russo P, Capozzi V, Arena MP, Spadaccino G, Dueñas MT, López P, Fiocco D, Spano G (2014) Riboflavin overproducing strains of Lactobacillus fermentum for riboflavin enriched bread. Appl Microbiol Biotechnol 98:3691–3700

    Article  CAS  PubMed  Google Scholar 

  • Salminen S, von Wright A, Morelli L, Marteau P, Brassart D, de Vos WM, Fondén R, Saxelin M, Collins K, Mogensen G, Birkeland SE, Mattila-Sandholm T (1998) Demonstration of safety of probiotics—a review. Int J Food Microbiol 44:93–106

  • Sanchez B, Bressollier P, Urdaci MC (2008) Exported proteins in probiotic bacteria: adhesion to intestinal surfaces, host immunomodulation and molecular cross-talking with the host. FEMS Immunol Med Microbiol 54:1–17

    Article  CAS  PubMed  Google Scholar 

  • Söderling EM, Marttinen AM, Haukioja AL (2011) Probiotic Lactobacilli interfere with Streptococcus mutans biofilm formation in vitro. Curr Microbiol 62:618–622

    Article  PubMed  Google Scholar 

  • Succi M, Tremonte P, Reale A, Sorrentino E, Grazia L, Pacifico S, Coppola R (2005) Bile salt and acid tolerance of Lactobacillus rhamnosus strains isolated from Parmigiano Reggiano cheese. FEMS Microbiol Lett 244:129–137

    Article  CAS  PubMed  Google Scholar 

  • van Baarlen P, Wells JM, Kleerebezem M (2013) Regulation of intestinal homeostasis and immunity with probiotic lactobacilli. Trend Immunol 34:208–215

    Article  Google Scholar 

  • van Bokhorst-van de Veen H, van Swam I, Wels M, Bron PA, Kleerebezem M (2012) Congruent strain specific intestinal persistence of Lactobacillus plantarum in an intestine-mimicking in vitro system and in human volunteers. PLoS One 7:11

  • van Loon AP, Hohmann HP, Bretzel W, Humbelin M, Pfister M (1996) Development of a fermentation process for the manufacture of riboflavin. Chimica 50:410–412

    Google Scholar 

  • Vergara-Irigaray M, Valle J, Merino N, Latasa C, García B, de Los R, Mozos I, Solano C, Toledo-Arana A, Penadés JR, Lasa I (2009) Relevant role of fibronectin-binding proteins in Staphylococcus aureus biofilm-associated foreign-body infections. Infect Immun 77:3978–3991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vinderola G, Matar C, Perdigon G (2005) Role of intestinal epithelial cells in immune effects mediated by gram-positive probiotic bacteria: involvementt of toll-like receptors. Clin Diagn Lab Immunol 12:1075–1084

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weinstein DL, O’Neill BL, Hone DM, Metcalf ES (1998) Differential early interactions between Salmonella enterica serovar Typhi and two other pathogenic Salmonella serovars with intestinal epithelial cells. Infect Immun 66:2310–2318

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

G.S. is supported by the Italian Ministry for Development in the framework of the “Industria 2015 Bando Nuove Tecnologie per il Made in Italy—Realizzazione di una innovativa pasta alimentare funzionale arricchita di componenti bioattivi e probiotici” and by MIUR [PON02_00186_2937475] in the framework of the project named “Protocolli innovativi per lo sviluppo di alimenti funzionali” [Pro.Ali.Fun.]”. P.L. and G.S. are supported by the Spanish Ministry of Economy and Competitiveness grants AGL2012-40084-C03-01. We would like to thank Prof. Michiel Kleerebezem [NIZO Food Research, Ede, Netherlands] for providing the L. plantarum WCFS1 strain and Dr. Fergal Rattray [Chr. Hansen, Hörsholm, Denmark] for providing Lactobacillus acidophilus LA5.

Conflicts of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Spano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arena, M.P., Russo, P., Capozzi, V. et al. Probiotic abilities of riboflavin-overproducing Lactobacillus strains: a novel promising application of probiotics. Appl Microbiol Biotechnol 98, 7569–7581 (2014). https://doi.org/10.1007/s00253-014-5837-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-014-5837-x

Keywords

Navigation