Skip to main content
Log in

Encapsulation of Probiotics: Proper Selection of the Probiotic Strain and the Influence of Encapsulation Technology and Materials on the Viability of Encapsulated Microorganisms

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Probiotic encapsulation is an entire system that not only involves but also depends on many factors. Elements such as the encapsulation method itself, materials, environmental conditions, and last, but not least, the strain; all play an important role in the encapsulation process. The current paper focuses on the right selection of probiotics, the various stress factors that impact the survival capacity of probiotics during and after encapsulation, and the rational selection of appropriate protection strategies to overcome these factors and achieve the highest possible encapsulation efficiency under optimal conditions. This review discusses the effects of temperature, moisture content, and water activity as well as pH, oxygen, and pressure on the viabilities of microorganisms. The effect of the surface and structure of the capsules on the encapsulated microorganisms and the impact of the materials used for the encapsulation are discussed as well. Last, but not least, the importance of choosing the right bacteria is reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food (2002) Guidelines for the evaluation of probiotics in food: report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food, London, Ontario, Canada. http://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf. Accessed 10 Dec 2016

  2. Rossier-Miranda FJ, Schroen K, Boom R (2010) Mechanical characterization and pH response of fibril-reinforced microcapsules prepared by layer-by-layer adsorption. Langmuir 26(24):19106–19113. https://doi.org/10.1021/la1033542

    Article  CAS  Google Scholar 

  3. Serna-Cock L, Vallejo-Castillo V (2013) Probiotic encapsulation. Afr J Microbiol Res 7(40):4743–4753. https://doi.org/10.5897/AJMR2013.5718

    Article  Google Scholar 

  4. Kandler O, Weiss N (1986) Regular, nonsporing gram-positive rods. In: Whitman WB (ed) Bergey’s manual of systematic bacteriology, 2nd edn., Vol. 2, New York, pp 1208–1234

  5. Shah N P (2006) Probiotics and fermented milks. In: Chandan R C (ed.) Manufacturing yogurt and fermented milks. Oxford, pp 341–354

  6. Hammes W P, Hertel C (2009) Genus I. Lactobacillus. 2009. In: Whitman W B (ed) Bergey's manual of systematic bacteriology, 2nd edn., Vol. 3, New York, pp 465–511

  7. Valík L, Medveďová A, Liptáková D (2008) Characterization of the growth of Lactobacillus rhamnosus GG in milk at suboptimal temperatures. J Food Nutr Res 47(2):60–67

    Google Scholar 

  8. Iravani S, Korbekandi H, Mirmohammadi SV (2015) Technology and potential applications of probiotic encapsulation in fermented milk products. J Food Sci Technol 52(8):4679–4696. https://doi.org/10.1007/s13197-014-1516-2

    Article  CAS  Google Scholar 

  9. Lee YK, Salminen S (2009) Handbook of probiotics and prebiotics, 2nd edn. Hoboken, New Jersey

    Google Scholar 

  10. Schär-Zammaretti P, Ubbink J (2003) The cell wall of lactic acid bacteria: surface constituents and macromolecular conformations. Biophys J 85(6):4076–4092. https://doi.org/10.1016/S0006-3495(03)74820-6

    Article  Google Scholar 

  11. Ramakrishna BS, Nair GB, Takeda Y (2014) ECAB probiotics in prevention of lifestyle disorders. Elsevier Health Sciences, Mumbai

    Google Scholar 

  12. Broeckx G, Vandenheuvel D, Claes IJJ, Lebber S, Kiekens F (2016) Drying techniques of probiotic bacteria as an important step towards the development of novel pharmabiotics. Int J Pharm 505:303–318. https://doi.org/10.1016/j.ijpharm.2016.04.002

    Article  CAS  Google Scholar 

  13. Gardiner GE, O'Sullivan E, Kelly J, Auty MAE, Fitzgerald GF, Collins JK, Ross RP, Stanton C (2000) Comparative survival rates of human-derived probiotic Lactobacillus paracasei and L. salivarius strains during heat treatment and spray drying. Appl Environ Microbiol 66:2605–2612. https://doi.org/10.1128/AEM.66.6.2605-2612.2000

    Article  CAS  Google Scholar 

  14. Colwell RR (2000) Viable but nonculturable bacteria: a survival strategy. J Infect Chemother 6:121–125. https://doi.org/10.1007/s101560000026

    Article  CAS  Google Scholar 

  15. Lahtinen SJ, Gueimonde M, Ouwehand AC, Reinikainen JP, Salminen SJ (2005) Probiotic bacteria may become dormant during storage. Appl Environ Microbiol 71(3):1662–1663. https://doi.org/10.1128/AEM.71.3.1662-1663.2005

    Article  CAS  Google Scholar 

  16. Kell DB, Kaprelyants AS, Weichart DH, Harwood CR, Barer MR (1998) Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie Van Leeuwenhoek 73(2):169–187. https://doi.org/10.1023/A:1000664013047

    Article  CAS  Google Scholar 

  17. Davis C (2014) Enumeration of probiotic strains: review of culture-dependent and alternative techniques to quantify viable bacteria. J Microbiol Methods 103:9–17. https://doi.org/10.1016/j.mimet.2014.04.012

    Article  CAS  Google Scholar 

  18. Staley JT, Konopka A (1985) Measurements of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346. https://doi.org/10.1146/annurev.mi.39.100185.001541

    Article  CAS  Google Scholar 

  19. Vidhyalakshimi R, Bhakyaraj R, Subhasree RS (2009) Encapsulation “the future of probiotics”—a review. Adv. Biol Res 3:96–103

    Google Scholar 

  20. Ankella K, Orsat V (2013) Optimization of microencapsulation of probiotics in raspberry juice by spray drying. LWT-Food Sci Technol 50:17–24. https://doi.org/10.1016/j.lwt.2012.08.003

    Article  Google Scholar 

  21. Santivarangkna C, Kulozik U, Forest P (2008) Inactivation mechanisms of lactic acid starter cultures preserved by drying processes. J Appl Microbiol 105:1–13. https://doi.org/10.1111/j.1365-2672.2008.03744.x

    Article  CAS  Google Scholar 

  22. Smelt JPPM, Brul S (2014) Thermal inactivation of microorganisms. Crit Rev Food Sci Nutr 54(10):1371–1385. https://doi.org/10.1080/10408398.2011.637645

    Article  CAS  Google Scholar 

  23. Jantzen M, Göpel A, Beerman C (2013) Direct spray drying and microencapsulation of probiotic Lactobacillus reuteri from slurry fermentation with whey. J Appl Microbiol 115(4):1029–1036. https://doi.org/10.1111/jam.12293

    CAS  Google Scholar 

  24. Arslan S, Erbas M, Tontul I, Topuz A (2015) Microencapsulation of probiotic Saccharomyces cerevisiae var. bouldarii with different wall materials by spray drying. LWT-Food Sci Technol 63:685–690. https://doi.org/10.1016/j.lwt.2015.03.034

    Article  CAS  Google Scholar 

  25. Ranadheera CS, Evans CA, Adams MC, Baines SK (2015) Microencapsulation of Lactobacillus acidophilus LA-5, Bifidobacterium animalis subsp. lactis BB-12 and Propionibacterium jensenii 702 by spray drying in goat’s milk. Small Ruminant Res 123:155–159. https://doi.org/10.1016/j.smallrumres.2014.10.012

    Article  Google Scholar 

  26. Desorby SA, Netto FM, Labuza TB (1997) Comparison of spray-drying, drum-drying and freeze-drying for β-carotene encapsulation and preservation. J Food Sci 62:1158–1162. https://doi.org/10.1111/j.1365-2621.1997.tb12235.x

    Article  Google Scholar 

  27. Martín MJ, Lara-Villoslada F, Ruiz MA, Morales ME (2015) Microencapsulation of bacteria: a review of different technologies and their impact on the probiotic effects. Innov Food Sci Emerg Technol 27:15–25. https://doi.org/10.1016/j.ifset.2014.09.010

    Article  Google Scholar 

  28. Paéz R, Lavari L, Vinderola G, Audero G, Cuatrin A, Zaritzky N, Reinheimer J (2012) Effect of heat treatment and spray drying on lactobacilli viability and resistance to simulated gastrointestinal digestion. Food Res Int 48:748–754. https://doi.org/10.1016/j.foodres.2012.06.018

    Article  Google Scholar 

  29. Lapsiri W, Bhandari B, Wanchaitanawong P (2012) Viability of Lactobacillus plantarum TISTR 2075 in different protectants during spray drying and storage. Dry Technol 30(13):1407–1412. https://doi.org/10.1080/07373937.2012.684226

    Article  CAS  Google Scholar 

  30. Liu H, Gong J, Chabot D, Miller SS, Cui SW, Ma J, Zhong F, Wang Q (2015) Protection of heat-sensitive probiotic bacteria during spray-drying by sodium caseinate stabilized fat particles. Food Hydrocoll 51:459–467. https://doi.org/10.1016/j.foodhyd.2015.05.015

    Article  CAS  Google Scholar 

  31. Sinkiewicz-Enggren G, Skurzynska A, Sandberg T (2015) Stabilization of Lactobacillus reuteri by encapsulation of bacterial cells through spray drying. Am J Biomed 3(7):432–443. 10.18081/2333-5106/015-07/432-443

    Article  Google Scholar 

  32. Rokka S, Rantamäki P (2010) Protecting probiotic bacteria by microencapsulation: challenges for industrial applications. Eur Food Res Technol 231:1–12

    Article  CAS  Google Scholar 

  33. Li XY, Chen XG, Liu CS, Peng HN, Cha DS (2008) Effect of trehalose and drying process on the survival of encapsulated Lactobacillus casei ATCC 393. Dry Technol 26:895–901. https://doi.org/10.1080/07373930802142507

    Article  CAS  Google Scholar 

  34. Zayed G, Roos YH (2004) Influence of trehalose and moisture content on survival of Lactobacillus salivarius subjected to freeze-drying and storage. Process Biochem 39:1081–1086. https://doi.org/10.1016/S0032-9592(03)00222-X

    Article  CAS  Google Scholar 

  35. Desmond C, Ross RP, O'Callaghan E, Fitzgerald G, Stanton C (2002) Improved survival of Lactobacillus paracasei NFBC 338 in spray-dried powders containing gm acacia. J Appl Microbiol 93:1003–1011. https://doi.org/10.1046/j.1365-2672.2002.01782.x

    Article  CAS  Google Scholar 

  36. Rajam R, Anandharamakrishnan C (2015) Spray freeze drying method for microencapsulation of Lactobacillus plantarum. J Food Eng 166:95–103. https://doi.org/10.1016/j.jfoodeng.2015.05.029

    Article  CAS  Google Scholar 

  37. Semyonov D, Ramon O, Kaplun Z, Levin-Brener L, Gurevich N, Shimoni E (2010) Microencapsulation of Lactobacillus paracasei by spray freeze drying. Food Res Int 43:193–202. https://doi.org/10.1016/j.foodres.2009.09.028

    Article  CAS  Google Scholar 

  38. Chávez BE, Ledeboer AM (2007) Drying of probiotics: optimization of formulation and process to enhance storage survival. Dry Technol 25:1193–1201. https://doi.org/10.1080/07373930701438576

    Article  Google Scholar 

  39. Chen J, Wang Q, Liu C, Gong J (2015) Issues deserve attention in encapsulating probiotics: critical review of existing literature. Crit Rev Food Sci Nutr 57(6):1228–1238. https://doi.org/10.1080/10408398.2014.977991

    Article  Google Scholar 

  40. Mortazavian A, Razavi SH, Ehsani RE, Sohrabvandi S (2007) Principles and methods of microencapsulation of probiotic microorganisms. Iran J Biotechnol 5:1–17

    CAS  Google Scholar 

  41. Tomás MSJ, de Gregorio PR, Terraf MCL, Nader-Macías MEF (2015) Encapsulation and subsequent freeze-drying of Lactobacillus reuteri CRL 1324 for its potential inclusion in vaginal probiotic formulation. Eur J Pharm Sci 79:87–95. https://doi.org/10.1016/j.ejps.2015.08.010

    Article  Google Scholar 

  42. Wang SY, Ho YF, Chen YP, Chen MJ (2015) Effects of a novel encapsulating technique on the temperature tolerance and anti-colitis activity of the probiotic bacterium Lactobacillus kefiranofaciens M1. Food Microbiol 46:494–500. https://doi.org/10.1016/j.fm.2014.09.015

    Article  CAS  Google Scholar 

  43. Pop OL, Diaconeasa Z, Brandau T, Ciuzan O, Pamfil D, Vodnar DC, Socacoi C (2015) Effect of glycerol, as cryoprotectant in the encapsulation and freeze drying of microspheres containing probiotic cells. Bulletin UASVM Food Sci Technol 75(1):27–32. 10.15835/buasvmcn-fst:10993

    Google Scholar 

  44. Gharsalloui A, Roudaut G, Chambin O, Voilley A, Saurel R (2007) Application of spray-drying in microencapsulation of food ingredients: an overview. Food Res Int 40:1107–1121. https://doi.org/10.1016/j.foodres.2007.07.004

    Article  Google Scholar 

  45. Ananta E, Volkert M, Knorr D (2005) Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG. Int Dairy J 15(4):399–409. https://doi.org/10.1016/j.idairyj.2004.08.004

    Article  CAS  Google Scholar 

  46. Teixeira PC, Castro MH, Malcata FX, Kirby RM (1995) Survival of Lactobacillus-delbrueckii spp. bulgaricus following spray-drying. J Dairy Sci 78:1025–1031. https://doi.org/10.3168/jds.S0022-0302(95)76718-2

    Article  CAS  Google Scholar 

  47. Albadran HA, Chatzifragkou A, Khutoryanskiy VV, Charalampopoulos D (2015) Stability of probiotic Lactobacillus plantarum in dry microcapsules under accelerated storage conditions. Food Res Int 74:208–216. https://doi.org/10.1016/j.foodres.2015.05.016

    Article  CAS  Google Scholar 

  48. Viernstein H, Raffalt J, Polheim D (2005) Stabilization of probiotic microorganisms. An overview of the techniques and some commercially available products. In: Nedovic V, Willaert R (ed.) Applications of cell immobilization biotechnology. Dordrecht, pp 439–452

  49. Lian WC, Hsiao HC, Chou CC (2002) Survival of bifidobacteria after spray-drying. Int J Food Microbiol 74:79–86. https://doi.org/10.1016/S0168-1605(01)00733-4

    Article  Google Scholar 

  50. Cruz AG, Antuanes AEC, Sousa ALOP, Faria JAF, Saad SMI (2009) Ice-cream as a probiotic food carrier. Food Res Int 42:1233–1239. https://doi.org/10.1016/j.foodres.2009.03.020

    Article  Google Scholar 

  51. Fritzen-Freire CB, Prudêncio ES, Amboni RDMC, Pinto SS, Negrão-Murakami AN, Murakami FS (2012) Microencapsulation of bifidobacteria by spray drying in the presence of prebiotics. Food Res Int 45:306–312. https://doi.org/10.1016/j.foodres.2011.09.020

    Article  CAS  Google Scholar 

  52. Tonon RV, Brabet C, Pallet D, Brat P, Hubinger MD (2009) Physicochemical and morphological characterisation of acai (Euterpe oleraceae Mart.) powder produced with different carrier agent. Int J Food Sci Technol 44:1950–1958. https://doi.org/10.1111/j.1365-2621.2009.02012.x

    Article  CAS  Google Scholar 

  53. Ersus S, Yurdagel U (2007) Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. J Food Eng 80:805–812. https://doi.org/10.1016/j.jfoodeng.2006.07.009

    Article  CAS  Google Scholar 

  54. Eratte D, McKnight S, Gengenbach TR, Dowling K, Barrow CJ, Adhikari BP (2015) Co-encapsulation and characterization of omega-3 fatty acids and probiotic bacteria in whey protein isolate-gum Arabic complex coacervates. J Funct Foods 19:882–892. https://doi.org/10.1016/j.jff.2015.01.037

    Article  CAS  Google Scholar 

  55. Maciel GM, Chaves KS, Grosso CRF, Gigante ML (2014) Microencapsulation of Lactobacillus acidophilus la-5 by spray-drying using sweet whey and skim milk as encapsulating materials. J Dairy Sci 97:1991–1998. https://doi.org/10.3168/jds.2013-7463

    Article  CAS  Google Scholar 

  56. Okuro PK, Thomazini M, Balieiro JCC, Liberal RD, Fávaro-Trindade CS (2013) Co-encapsulation of Lactobacillus acidophilus with inulin or polydextrose in solid lipid microparticles provides protection and improves stability. Food Res Int 53:96–103. https://doi.org/10.1016/j.foodres.2013.03.042

    Article  CAS  Google Scholar 

  57. Ananta E, Knorr D (2003) Pressure-induced thermotolerance of Lactobacillus rhamnosus GG. Food Res Int 36:991–997. https://doi.org/10.1016/j.foodres.2003.07.001

    Article  Google Scholar 

  58. Padan E, Bibi E, Ito M, Krulwich TA (2005) Alkaline pH homeostasis in bacteria: new insights. BBA-Biomembranes 1717(2):67–88. https://doi.org/10.1016/j.bbamem.2005.09.010

    Article  CAS  Google Scholar 

  59. Rahman MS (2007) Handbook of food preservation, 2nd edn. CRC Press, New York

    Book  Google Scholar 

  60. Nag A, Han KS, Singh H (2011) Microencapsulation of probiotic bacteria using pH-induced gelation of sodium caseinate and gellan gum. Int Dairy J 21:247–253. https://doi.org/10.1016/j.idairyj.2010.11.002

    Article  CAS  Google Scholar 

  61. Lourens-Hattingh A, Viljoen BC (2001) Yogurt as probiotic carrier food. Int Dairy J 11:1–17. https://doi.org/10.1016/S0958-6946(01)00036-X

    Article  Google Scholar 

  62. Talwalkar A, Kailasapathy K (2004) The role of oxygen in the viability of probiotic bacteria with reference to L. acidophilus and Bifidobacterium spp. Curr Issues Intest Microbiol 5:1–8

    CAS  Google Scholar 

  63. Khem S, Small DM, May BK (2016) The behaviour of whey protein isolate in protecting Lactobacillus plantarum. Food Chem 190:717–723. https://doi.org/10.1016/j.foodchem.2015.06.020

    Article  CAS  Google Scholar 

  64. Pimentel-González DJ, Campos-Montiel RG, Lobato-Calleros C, Pedroza-Islas R, Vernon-Carter EJ (2009) Encapsulation of Lactobacillus rhamnosus in double emulsions formulated with sweet whey as emulsifier and survival in simulated gastrointestinal conditions. Food Res Int 42:292–297. https://doi.org/10.1016/j.foodres.2008.12.002

    Article  Google Scholar 

  65. Cheow WS, Hadinoto K (2013) Biofilm-like Lactobacillus rhamnosus probiotics encapsulated in alginate and carrageenan microcapsules exhibiting enhanced thermotolerance and freeze-drying resistance. Biomacromolecules 14:3214−3222. https://doi.org/10.1021/bm400853d

    Article  Google Scholar 

  66. Shaharuddin S, Muhamad II (2015) Microencapsulation of alginate-immobilized bagasse with Lactobacillus rhamnosus NRRL 442: enhancement of survivability and thermotolerance. Carbohydr Polym 119:173–181. https://doi.org/10.1016/j.carbpol.2014.11.045

    Article  CAS  Google Scholar 

  67. Sohail A, Turner MS, Coombes A, Bhandari B (2013) The viability of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM following double encapsulation in alginate and maltodextrin. Food Bioprocess Technol 6:2763–2769. https://doi.org/10.1007/s11947-012-0938-y

    Article  Google Scholar 

  68. Gerez CL, Font de Valdez G, Gigante ML, Grosso CRF (2012) Whey protein coating bead improves the survival of the probiotic Lactobacillus rhamnosus CRL 1505 to low pH. Lett Appl Microbiol 54:552–556. https://doi.org/10.1111/j.1472-765X.2012.03247.x

    Article  CAS  Google Scholar 

  69. Avila-Reyes SV, Garcia-Suarez FJ, Jímenez MT, San Martín-Gonzalez MF, Bello-Perez LA (2014) Protection of L. rhamnosus by spray-drying using two prebiotics colloids to enhance the viability. Carbohydr Polym 102:423–430. https://doi.org/10.1016/j.carbpol.2013.11.033

    Article  CAS  Google Scholar 

  70. Ying D, Sanguansri L, Weerakkody R, Singh TK, Leischtfeld SF, Gantenbein-Demarchi C, Augustin MA (2011) Tocopherol and ascorbate have contrasting effects on the viability of microencapsulated Lactobacillus rhamnosus GG. J Agric Food Chem 59:10556–10563. https://doi.org/10.1021/jf202358m

    Article  CAS  Google Scholar 

  71. Bustamante M, Villarroel M, Rubilar M, Shene C (2015) Lactobacillus acidophilus La-05 encapsulated by spray drying: effect of mucilage and protein from flaxseed (Linum usitatissimum L.) LWT-Food Sci Technol 62:1162–1168. https://doi.org/10.1016/j.lwt.2015.02.017

    Article  CAS  Google Scholar 

  72. de Araújo Etchepare M, Raddatz GC, de Moraes Flores ÉM, Zepka LQ, Jacob-Lopes E, Barin JS, Grosso CRF, de Menezes CR (2016) Effect of resistant starch and chitosan on survival of Lactobacillus acidophilus microencapsulated with sodium alginate. LWT-Food Sci Technol 65:511–517. https://doi.org/10.1016/j.lwt.2015.08.039

    Article  Google Scholar 

  73. Shinde T, Sun-Waterhouse D, Brooks J (2014) Co-extrusion encapsulation of probiotic Lactobacillus acidophilus alone or together with apple skin polyphenols: an aqueous and value-added delivery system using alginate. Food Bioprocess Techol 7:1581–1596. https://doi.org/10.1007/s11947-013-1129-1

    Article  CAS  Google Scholar 

  74. Cai S, Zhao M, Fang Y, Nishinari K, Phillips GO, Jiang F (2014) Microencapsulation of Lactobacillus acidophilus CGMCC1.2686 via emulsification/internal gelation of alginate using Ca-EDTA and CaCO3 as calcium sources. Food Hydrocoll 39(8):295–300. https://doi.org/10.1016/j.foodhyd.2014.01.021

    Article  CAS  Google Scholar 

  75. Cozzoli O (1997) The role of surfactants in self preserving cosmetic formulas. In: Kabara JJ, Orth DS (ed) Preservative-free and self-preserving cosmetics and drugs. CRC Press, New York, pp 75–119

  76. Chandramouli V, Kailasapathy K, Peiris P, Jones M (2004) An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J Microbiol Methods 56:27–35. https://doi.org/10.1016/j.mimet.2003.09.002

    Article  CAS  Google Scholar 

  77. Trabelsi I, Bejar W, Ayadi D, Chouayekh H, Kammoun R, Bejar S, Salah RB (2013) Encapsulation in alginate and alginate coated-chitosan improved the survival of newly probiotic in oxgall and gastric juice. Int J Biol Macromol 61:36–42. https://doi.org/10.1016/j.ijbiomac.2013.06.035

    Article  CAS  Google Scholar 

  78. Anal AK, Singh H (2007) Recent advances in microencapsulation of probiotics for industrial application and targeted delivery. Trends Food Sci Technol 18:240–251. https://doi.org/10.1016/j.tifs.2007.01.004

    Article  CAS  Google Scholar 

  79. Shi LE, Li ZH, Li DT, Xu M, Chen HY, Zhang ZL, Tang ZX (2013) Encapsulation of probiotic Lactobacillus bulgaricus in alginate–milk microspheres and evaluation of the survival in simulated gastrointestinal conditions. J Food Eng 117(1):99–104. https://doi.org/10.1016/j.jfoodeng.2013.02.012

    Article  CAS  Google Scholar 

  80. Nazzaro F, Orlando P, Frantianni F, Coppola R (2012) Microencapsulation in food science and biotechnology. Curr Opin Biotechnol 23:182–186. https://doi.org/10.1016/j.copbio.2011.10.001

    Article  CAS  Google Scholar 

  81. Petrović T, Nedović V, Dimitrijević-Branković S, Bugarski B, Lacroix C (2007) Protection of probiotic microorganisms by microencapsulation. Chem Ind Chem Eng Q 13:169–174. https://doi.org/10.2298/CICEQ0703169P

    Article  Google Scholar 

  82. Pinto SS, Fritzen-Freire CB, Benedetti S, Murakami FS, Petrus JCC, Prudêncio ES, Amboni RD (2015) Potential use of whey concentrate and prebiotics as carrier agents to protect Bifidobacterium-BB-12 microencapsulated by spray drying. Food Res Int 67:400–408. https://doi.org/10.1016/j.foodres.2014.11.038

    Article  CAS  Google Scholar 

  83. He Y, Wu Z, Tu L, Han Y, Zhang G, Li C (2015) Encapsulation and characterization of slow-release microbial fertilizer from the composites of bentonite and alginate. Appl Clay Sci 109:68–75. https://doi.org/10.1016/j.clay.2015.02.001

    Article  Google Scholar 

  84. Valero-Cases E, Frutos MJ (2015) Effect of different types of encapsulation on the survival of Lactobacillus plantarum during storage with inulin and in vitro digestion. LWT-Food Sci Technol 64:824–828. https://doi.org/10.1016/j.lwt.2015.06.049

    Article  CAS  Google Scholar 

  85. Lee JS, Cha DS, Park HJ (2004) Survival of freeze-dried Lactobacillus bulgaricus KFRI 673 in chitozan-coated calcium alginate microparticles. J Agric Food Chem 52:7300–7305. https://doi.org/10.1021/jf040235k

    Article  CAS  Google Scholar 

  86. Capela P, Hay TKC, Shah NP (2007) Effect of homogenization on bead size and survival of encapsulated probiotic bacteria. Food Res Int 40:1261–1269. https://doi.org/10.1016/j.foodres.2007.08.006

    Article  CAS  Google Scholar 

  87. Hansen LT, Allan-Wojtas PM, Jin YL, Paulson AT (2002) Survival of Ca-alginate microencapsulated Bifidobacterium spp. in milk and simulated gastrointestinal conditions. Food Microbiol 19:35–45. https://doi.org/10.1016/fmic.2001.0452

    Article  CAS  Google Scholar 

  88. Vos P, Bučko M, Gemeiner P, Navrátil M, Švitel J, Faas M, Strand B L, Skjak-Braek G, Morch Y A, Vikartovska A, Laćik I, Kolláriková G, Orive G, Poncelet D, Pedraz J L (2009) Multiscale requirements for bioencapsulation in medicine and biotechnology. Biomaterials 1–12. doi: https://doi.org/10.1016/j.biomaterials.2009.01.014

  89. Cook MT, Tzortzis G, Charalampopoulos D, Khutoryanskiy VV (2014) Microencapsulation of a synbiotic into PLGA/alginate multiparticulate gels. Int J Pharm 466:400–408. https://doi.org/10.1016/j.ijpharm.2014.03.034

    Article  CAS  Google Scholar 

  90. Shi LE, Li ZH, Zhang ZL, Zhang TT, Yu WM, Zhou ML, Tang ZX (2013) Encapsulation of Lactobacillus bulgaricus in carrageenan-locust bean gum coated milk microspheres with double layer structure. LWT-Food Sci Technol 54:147–151. https://doi.org/10.1016/j.lwt.2013.05.027

    Article  CAS  Google Scholar 

  91. Sousa S, Gomes AM, Pintado MM, Silva JP, Costa P, Amaral MH, Duarte AC, Rodrigues D, Rocha-Santos TAP, Freitas AC (2015) Characterization of freezing effect upon stability of, probiotic loaded, calcium-alginate microparticles. Food Bioprod Process 93:90–97. https://doi.org/10.1016/j.fbp.2013.11.007

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aušra Šipailienė.

Ethics declarations

Disclosure Statement

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šipailienė, A., Petraitytė, S. Encapsulation of Probiotics: Proper Selection of the Probiotic Strain and the Influence of Encapsulation Technology and Materials on the Viability of Encapsulated Microorganisms. Probiotics & Antimicro. Prot. 10, 1–10 (2018). https://doi.org/10.1007/s12602-017-9347-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-017-9347-x

Keywords

Navigation