Skip to main content
Log in

The Viability of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM Following Double Encapsulation in Alginate and Maltodextrin

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Lactobacillus rhamnosus GG (LGG) and Lactobacillus acidophilus NCFM (LNCFM) were encapsulated in alginate microgel particles (microbeads) by a novel dual aerosols method. The encapsulated probiotics in microbead gel matrix were further stabilized in maltodextrin solids by either spray or freeze-drying to form probiotic microcapsule powders. The free cells of probiotics were also sprayed and freeze-dried in maltodextrin only without microgel encapsulation. After rehydration of microgel-encapsulated powder, gel particles regained their shape. There was no difference in the loss of viability between encapsulated and unencapsulated probiotics during spray drying or freeze-drying. For LNCFM, spray-dried bacteria with or without gel encapsulation exhibited less death (3.03 and 3.07 log CFU/g reduction, respectively) than those of freeze-dried bacteria (4.36 and 4.89 log CFU/g reduction, respectively) after 6 months storage at 4 °C. The same trend was also observed in spray-dried LGG without gel encapsulation which showed 5.87 log CFU/g reduction in viability after 6 months at 4 °C; however, freeze-dried LGG without gel encapsulation exhibited a rapid reduction in viability of 5.91 log CFU/g within just 2 months. Gel-encapsulated LGG which was freeze-dried exhibited less death (3.32 log CFU/g reduction) after 6 months at 4 °C. This work shows that spray drying results in improved subsequent probiotic survivability compared to freeze-drying and that alginate gel encapsulation can improve the survivability following freeze-drying in a probiotic-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anal, A. K., & Singh, H. (2007). Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends in Food Science & Technology, 18(5), 240–251.

    Article  CAS  Google Scholar 

  • Ananta, E., Volkert, M., & Knorr, D. (2005). Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG. International Dairy Journal, 15(4), 399–409.

    Article  CAS  Google Scholar 

  • AOAC. (2008). Official methods of analysis (18th ed.). Washington: Association of Official Analytical Chemists.

    Google Scholar 

  • Capela, P., Hay, T. K. C., & Shah, N. P. (2006). Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt. Food Research International, 39(2), 203–211.

    Article  CAS  Google Scholar 

  • Champagne, C. P., Gardner, N. J., & Roy, D. (2005). Challenges in the addition of probiotic cultures to foods. Critical Reviews in Food Science and Nutrition, 45(1), 61–84.

    Article  CAS  Google Scholar 

  • Chavez, B. E., & Ledeboer, A. M. (2007). Drying of probiotics: optimization of formulation and process to enhance storage survival. Drying Technology, 25(7–8), 1193–1201.

    Article  CAS  Google Scholar 

  • Collins, J. K., Thornton, G., & Sullivan, G. O. (1998). Selection of probiotic strains for human applications. International Dairy Journal, 8(5–6), 487–490.

    Article  Google Scholar 

  • De Giulio, B., Orlando, P., Barba, G., Coppola, R., De Rosa, M., Sada, A., et al. (2005). Use of alginate and cryo-protective sugars to improve the viability of lactic acid bacteria after freezing and freeze-drying. World Journal of Microbiology and Biotechnology, 21(5), 739–746.

    Article  Google Scholar 

  • Gibbs, B. F., Kermasha, S., Alli, I., & Mulligan, C. N. (1999). Encapsulation in the food industry: a review. International Journal of Food Sciences and Nutrition, 50(3), 213–224.

    Article  CAS  Google Scholar 

  • Goderska, K., & Czarnecki, Z. (2008). Influence of micro encapsulation and spray drying on the viability of Lactobacillus and Bifidobacterium strains. Polish Journal of Microbiology, 57(2), 135–140.

    Google Scholar 

  • Hamsupo, K., Sukyai, P., Nitisinprasert, S., & Wanchaitanawong, P. (2005). Different growth media and growth phases affecting on spray drying and freeze drying of Lactobacillus reuteri KUB-AC5. Kasetsart Journal (Natural Science), 39(4), 718–724.

    Google Scholar 

  • Krasaekoopt, W., Bhandari, B., & Deeth, H. (2004). The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. International Dairy Journal, 14(8), 737–743.

    Article  CAS  Google Scholar 

  • Li, X. Y., Chen, X. G., Cha, D. S., Park, H. J., & Liu, C. S. (2009). Microencapsulation of a probiotic bacteria with alginate–gelatin and its properties. Journal of Microencapsulation, 26(4), 315–324.

    Article  Google Scholar 

  • Manojlovic', V., Nedovic', V. A., Kailasapathy, K., & Zuidam, N. J. (2010). Encapsulation of probiotics for use in food products. In N. J. Zuidam & V. A. Nedovic (Eds.), Encapsulation technologies for active food ingredients and food processing (pp. 269–302). New York: Springer.

    Chapter  Google Scholar 

  • Mokarram, R. R., Mortazavi, S. A., Najafi, M. B. H., & Shahidi, F. (2009). The influence of multi stage alginate coating on survivability of potential probiotic bacteria in simulated gastric and intestinal juice. Food Research International, 42(8), 1040–1045.

    Article  CAS  Google Scholar 

  • Morelli, L. (2000). In vitro selection of probiotic lactobacilli: a critical appraisal. Current Issues in Intestinal Microbiology, 1(2), 59–67.

    CAS  Google Scholar 

  • Picot, A., & Lacroix, C. (2004). Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. International Dairy Journal, 14(6), 505–515.

    Article  CAS  Google Scholar 

  • Riveros, B., Ferrer, J., & Borquez, R. (2009). Spray drying of a vaginal probiotic strain of Lactobacillus acidophilus. Drying Technology, 27(1), 123–132.

    Article  Google Scholar 

  • Rokka, S., & Rantamaki, P. (2010). Protecting probiotic bacteria by microencapsulation: challenges for industrial applications. European Food Research and Technology, 231(1), 1–12.

    Article  CAS  Google Scholar 

  • Semyonov, D., Ramon, O., Kaplun, Z., Levin-Brener, L., Gurevich, N., & Shimoni, E. (2010). Microencapsulation of Lactobacillus paracasei by spray freeze drying. Food Research International, 43(1), 193–202.

    Article  CAS  Google Scholar 

  • Shilpa, A., Agrawal, S. S., & Ray, A. R. (2003). Controlled delivery of drugs from alginate matrix. Polymer Reviews, 43(2), 187–221.

    Google Scholar 

  • Sohail, A., Turner, M. S., Coombes, A., Bostrom, T., & Bhandari, B. (2011). Survivability of probiotics encapsulated in alginate gel microbeads using a novel impinging aerosols method. International Journal of Food Microbiology, 145(1), 162–168.

    Article  CAS  Google Scholar 

  • Sohail, A., Turner, M. S., Prabawati, E. K., Coombes, A. G. A., & Bhandari, B. (2012). Evaluation of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM encapsulated using a novel impinging aerosol method in fruit food products. International Journal of Food Microbiology, 157(2), 162–166.

  • Teixeira, P., Castro, H., & Kirby, R. (1995). Spray drying as a method for preparing concentrated cultures of Lactobacillus bulgaricus. Journal of Applied Microbiology, 78(4), 456–462.

    Article  Google Scholar 

  • Teixeira, P. C., Castro, M. H., Malcata, F. X., & Kirby, R. M. (1995). Survival of Lactobacillus delbrueckii ssp. bulgaricus following spray-drying. Journal of Dairy Science, 78(5), 1025–1031.

    Article  CAS  Google Scholar 

  • Teixeira, P., Castro, H., & Kirby, R. (1996). Evidence of membrane lipid oxidation of spray-dried Lactobacillus bulgaricus during storage. Letters in Applied Microbiology, 22(1), 34–38.

    Article  CAS  Google Scholar 

  • Wang, Y. C., Yu, R. C., & Chou, C. C. (2004). Viability of lactic acid bacteria and bifidobacteria in fermented soymilk after drying, subsequent rehydration and storage. International Journal of Food Microbiology, 93(2), 209–217.

    Article  Google Scholar 

  • Ying, D. Y., Phoon, M. C., Sanguansri, L., Weerakkody, R., Burgar, I., & Augustin, M. A. (2010). Microencapsulated Lactobacillus rhamnosus GG powders: relationship of powder physical properties to probiotic survival during storage. Journal of Food Science, 75(9), E588–E595.

    Article  CAS  Google Scholar 

  • Zhou, Y., Martins, E., Groboillot, A., Champagne, C. P., & Neufeld, R. J. (1998). Spectrophotometric quantification of lactic bacteria in alginate and control of cell release with chitosan coating. Journal of Applied Microbiology, 84(3), 342–348.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhesh Bhandari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sohail, A., Turner, M.S., Coombes, A. et al. The Viability of Lactobacillus rhamnosus GG and Lactobacillus acidophilus NCFM Following Double Encapsulation in Alginate and Maltodextrin. Food Bioprocess Technol 6, 2763–2769 (2013). https://doi.org/10.1007/s11947-012-0938-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-0938-y

Keywords

Navigation