Skip to main content
Log in

Characterization and Antioxidant Property of Probiotic and Synbiotic Yogurts

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The effect of a prebiotic (fructooligosaccharides) or a synbiotic components (prebiotic and probiotic) on the viability, proteolysis and antioxidant properties of probiotic and synbiotic yogurt during 28 days of storage at 4 °C has been investigated. Yogurt starters in conjunction with either probiotic bacteria Lactobacillus plantarum CFR 2194, Lactobacillus fermentum CFR 2192 and/or fructooligosaccharides (FOS) were used for yogurt preparation. Titratable acidity and pH of all yogurt samples followed a similar pattern of increase or decrease during storage. Proteolysis in synbiotic yogurts was found to be significantly (P < 0.05) higher in comparison with that of control. The addition of prebiotics had no effect (P = 0.17888) on the viability of yogurt starters during cold storage. No observable changes in the viability of probiotic cultures in probiotic groups. However, supplementation of FOS affected the growth significantly (P < 0.05) in promoting the growth of L. plantarum and L. fermentum. Antioxidant activities, the index of nutritional value of yogurt, were monitored. Results showed that the DPPH-radical-scavenging activity (85 %) in synbiotic yogurt containing L. plantarum and FOS was significantly higher (P < 0.05) in comparison with that of control yogurt (72 %). Total phenolics and the ferric reducing power were highest in synbiotic yogurts in comparison with that of other test samples during the entire period of storage. Addition of selected probiotics with FOS thus resulted in an improved functionality of yogurt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adolfsson O, Meydani SN, Russell RM (2004) Yogurt and gut function. Am J Clin Nutr 80(2):245–256

    CAS  Google Scholar 

  2. AOAC (1984) Official methods of analysis, 14th edn. Association of Official Analytical Chemists, Washington

    Google Scholar 

  3. Apostolidis E, Kwon YI, Ghaedian R, Shetty K (2007) Fermentation of milk and soymilk by lactobacillus bulgaricus and lactobacillus acidophilus enhances functionality for potential dietary management of hyperglycemia and hypertension. Food Biotechnol 21:217–236

    Article  CAS  Google Scholar 

  4. Bronner F, Pansu D (1999) Nutritional aspects of calcium absorption. J Nutr 129:9–12

    CAS  Google Scholar 

  5. Bujalance C, Jimenez-Valera M, Moreno E, Ruiz-Bravo A (2006) A selective differential medium for Lactobacillus plantarum. J Microbiol Met 66:572–575

    Article  CAS  Google Scholar 

  6. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma as a measure of antioxidant power. The FRAP assay. Anal Biochem 239:70–76

    Article  CAS  Google Scholar 

  7. Champagne CP, Roy D, Lafond A (1997) Selective enumeration of Lactobacillus casei in yogurt-type fermented milks based on a 15 °C incubation temperature. Biotechnol Tech 11(8):567–569

    Article  CAS  Google Scholar 

  8. Christensen JE, Dudley EG, Pederson JA, Steele JL (1999) Peptidases and amino acid catabolism in lactic acid bacteria. Ant van Leeuwenhoek 75(1–4):217–246

    Article  Google Scholar 

  9. Damin MR, Almeida KE, Minowa E (2006) Propriedades físico-químicas e viabilidade de Streptococcus salivarius subsp. bulgaricus em diferentes marcas de iogurtes comerciais no período final da vida de prateleira. Revista Leite E Derivados 9:20–30

    Google Scholar 

  10. Dave RI, Shah NP (1996) Evaluation of media for selective enumeration of Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus, and bifidobacteria. J Dairy Sci 79:1529–1536

    Article  CAS  Google Scholar 

  11. Desai AR, Powell IB, Shah NP (2004) Survival and activity of probiotic lactobacilli in skim milk containing prebiotics. J Food Sci 69(1):57–60

    Google Scholar 

  12. Donkar ON, Nilmini SLI, Stolic P, Vasiljevic T, Shah NP (2007) Survival and activity of selected probiotic organisms in set-type yogurt during cold storage. Int Dairy J 16(1):1181–1189

    Article  Google Scholar 

  13. Gad AS, Kholif AM, Sayed AF (2010) Evaluation of the nutritional value of functional yogurt resulting from combination of date palm syrup and skim milk. Amer J Food Technol 5(4):250–259

    Article  CAS  Google Scholar 

  14. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125(6):1401–1412

    CAS  Google Scholar 

  15. Gmeiner M, Kneifel W, Kulbe KD, Wouters R, De Boever P, Nollet L, Verstraete W (2000) Gmeiner M, Kneifel W, Kulbe KD, Wouters R, De Boever P, Nollet L, Verstraete W (2000) Influence of a synbiotic mixture consisting of Lactobacillus acidophilus 74-2 and a fructooligosaccharide preparation on the microbial ecology sustained in a simulation of the human intestinal microbial ecosystem (SHIME reactor). Appl Microbiol Biotechnol 53:219–223

    Article  CAS  Google Scholar 

  16. IDF (1995) Consumption statistics for milk and milk products. Int Dairy Fed Bull (301), Brussels

  17. Klaenhammer TR, Kullen MJ (1999) Selection and design of probiotics. Int J Food Microbiol 50(1–2):45–57

    Article  CAS  Google Scholar 

  18. Krishnamurthy S, Kantha HJ (2005) Food color measurement: Instrumentation and Techniques. J Instr Soc India 35(2):227–238

    Google Scholar 

  19. Kullisaar T, Zilmer M, Mikelsaar M, Vihalemm T, Annuk H, Kairane C, Kilk A (2002) Two antioxidative lactobacilli strains as promising probiotics. Int J Food Microbiol 72:215–224

    Article  CAS  Google Scholar 

  20. Kullisaar T, Songisepp E, Mikelsaar M, Zilmer K, Vihalemm T, Zilmer M (2003) Antioxidative probiotic fermented goats’ milk decreases oxidative stress-mediated atherogenicity in human subjects. Br J Nutr 90(2):449–456

    Article  CAS  Google Scholar 

  21. Leclerc PL, Gauthier SF, Bachelard H, Santure M, Roy D (2002) Antihypertensive activity of casein-enriched milk fermented by Lactobacillus helveticus. Int Dairy J 12:995–1004

    Article  CAS  Google Scholar 

  22. Lin MY, Chang FY (2000) Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC15708 and Lactobacillus acidophilus ATCC 4356. Dig Dis Sci 45:1617–1622

    Article  CAS  Google Scholar 

  23. Madhu AN, Giribhattanavar P, Prapulla SG (2010) Probiotic lactic acid bacterium from kanjika as a potential source of vitamin B12: evidence from LC-MS, immunological and microbiological techniques. Biotechnol Lett 32:503–506

    Article  CAS  Google Scholar 

  24. Madhu AN, Awasthi SP, Reddy KBPK, Prapulla SG (2011) Impact of Freeze and Spray drying on the retention of probiotic properties of Lactobacillus fermentum: An in vitro evaluation model. Int J Microbiol Res 2(3):243–251

    Google Scholar 

  25. Madhu AN, Prapulla SG (2012) In vitro fermentation of prebiotics by lactobacillus plantarum CFR 2194: selectivity, viability and effect of metabolites on β-glucuronidase activity. World J Microbiol Biotechnol 28:901–908

    Article  Google Scholar 

  26. Makras L, Van Acker G, De Vuyst L (2005) Lactobacillus casei subsp. Casei 8700:2 degrades inulin-type fructans exhibiting different degrees of polymerization. Appl Environ Microbiol 71(11):6531–6537

    Article  CAS  Google Scholar 

  27. Oliveira RPD, Perego P, Converti A, Oliveira MND (2009) The effect of inulin as a prebiotic on the production of probiotic fibre-enriched fermented milk. Int J Dairy Technol 62(2):195–203

    Article  CAS  Google Scholar 

  28. Oxman T, Shapira M, Diver A, Klein R, Avazov N, Rabinowitz B (2000) A new method of long-term preventive cardioprotection using Lactobacillus. Am J Physiol 278:H1717–H1724

    CAS  Google Scholar 

  29. Ramachandran L, Shah NP (2010) Characterization of functional, biochemical and textural properties of synbiotic low-fat yogurts during refrigerated storage. LWT Food Sci Technol 43:819–827

    Article  Google Scholar 

  30. Reddy PKKB, Raghavendra P, Girishkumar B, Misra MC, Prapulla SG (2007) Screening of probiotic properties of lactic acid bacteria isolated from Kanjika, an ayurvedic lactic acid fermented product: an in vivo evaluation. J Gen Appl Microbiol 53:207–213

    Article  CAS  Google Scholar 

  31. Roberfroid MB (1998) Prebiotics and synbiotics—concepts and nutritional properties. Brit J Nutr 80:197–202

    Google Scholar 

  32. Rybka S, Kailaspathy K (1995) The survival of culture bacteria in fresh and freeze dried AB yogurts. Aus J Dairy Technol 50:3480–3484

    Google Scholar 

  33. SAS (1996) SAS/STAT software: changes and enhancements through release 6.11. SAS Inst Inc., Cary

    Google Scholar 

  34. Schaafsma G, Meuling WJ, van Dokkum W, Bouley C (1998) Effects of a milk product, fermented by Lactobacillus acidophilus and with fructo-oligosaccharides added, on blood lipids in male volunteers. Eur J Clin Nutr 52(6):436–440

    Article  CAS  Google Scholar 

  35. Shahani KM, Chandan RC (1979) Nutritional and healthful aspects of cultured and culture-containing dairy foods. J Dairy Sci 62:1685–1694

    Article  CAS  Google Scholar 

  36. Sheu SJ, Hwang WZ, Chiang YC, Lin WH, Chen HC, Tsen HY (2010) Use of Tuf gene-based primers for the PCR detection of probiotic bifidobacterium species and enumeration of bifidobacteria in fermented milk by cultural and quantitative real-time PCR methods. J Food Sci 75(8):521–527

    Article  Google Scholar 

  37. Tharmaraj N, Shah NP (2003) Selective enumeration of Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, bifidobacteria, Lactobacillus casei, Lactobacillus rhamnosus and Propionibacteria. J Dairy Sci 86:2288–2296

    Article  CAS  Google Scholar 

  38. Vasiljevic T, Kealy T, Mishra VK (2007) Effects of β-glucan addition to a probiotic containing yogurt. J Food Sci 72(7):405–411

    Article  Google Scholar 

  39. Ziemer CJ, Gibson GR (1998) An overview of probiotics, prebiotics, and synbiotics, in the functional food concept. Perspectives and future strategies. Int Dairy J 8:473–479

    Article  CAS  Google Scholar 

  40. Zheng W, Wang SY (2001) Antioxidant activity and phenolic compounds in selected herbs. J Agri Food Chem 49:5165–5170

    Article  CAS  Google Scholar 

  41. Zubillaga M, Weill R, Postaire EC, Caro R, Boccio J (2001) Effect of probiotics and functional foods and their use in different diseases. Nutr Res 21:569–579

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A. N. Madhu is thankful to Council of Scientific and Industrial Research (CSIR), New Delhi, India for the award of Senior Research Fellowship. The authors thank Director, CFTRI, for supporting the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddalingaiya Gurudutt Prapulla.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 75 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madhu, A.N., Amrutha, N. & Prapulla, S.G. Characterization and Antioxidant Property of Probiotic and Synbiotic Yogurts. Probiotics & Antimicro. Prot. 4, 90–97 (2012). https://doi.org/10.1007/s12602-012-9099-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-012-9099-6

Keywords

Navigation