Skip to main content
Log in

Corrugated rGO-supported Pd composite on carbon paper for efficient cathode of Mg-H2O2 semi-fuel cell

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A corrugated reduced graphene oxide (rGO)-supported Pd composite on carbon paper (Pd/rGO/CP) is prepared via a simple chemical reduction process combined with electrodeposition. The microstructure, morphology, and surface chemical state of the composite and its performance in H2O2 reduction in an acidic medium are investigated. An rGO film with ample corrugated wrinkles coated closely on CP is prepared, and Pd nanoparticles are evenly decorated on the surface of rGO/CP. The Pd/rGO/CP electrode has a low Pd loading and high catalytic performance for H2O2 reduction in acidic media compared to Pd/CP. An excellent mass normalized activity (11,783 A·gPd−1) of the Pd/rGO/CP electrode for H2O2 reduction is achieved at 0 V due to the corresponding low Pd loadings. Mg-H2O2 semi-fuel cells using Pd/rGO/CP electrode as the cathode exhibits a peak power density of 215 mW·cm−2 at 60 °C and perfect stability during a 50-h discharge. The rGO interlayer forms a microscopic three-dimensional (3D) structure on the surface of CP, thereby improving the utilization of precious metals and the specific surface area, as well as providing more Pd sites due to the transfer of electrons to Pd. Consequently, the performance of the electrode is improved.

Graphical abstract

摘要

采用简单的化学还原与电沉积相结合的方法, 以碳纸为基底, 在其表面制备了Pd修饰的波纹状还原氧化石墨烯(rGO)层复合材料(Pd/rGO/CP)。考察了复合材料的微观结构、形貌、表面化学状态及其在酸性介质中H2O2还原的性能。波纹状石墨烯层覆盖在碳纸表面(rGO/CP), 钯纳米颗粒均匀地修饰在石墨烯表面。与Pd/CP相比, Pd/rGO/CP电极具有较低的Pd负载量和较高的催化酸性介质中H2O2电还原性能。由于Pd负载量较低, 当电压为0 V时, Pd/rGO/CP电极单位Pd质量的H2O2还原活性优异(11783 A•gPd-1)。以Pd/rGO/CP电极为阴极的Mg- H2O2半燃料电池, 在60 ℃时的峰功率密度达到215 mW•cm-2, 放电50 h过程中, 一直保持良好的稳定性。这可归因于还原氧化石墨烯中间层在碳纸表面形成了微观的三维结构, 提高了贵金属Pd的利用率和比表面积, 此外, 电子从石墨烯向Pd的转移提供了更多的Pd活性位点, 从而提高了电极的性能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hasvold Ø, Storkersen NJ, Forseth S. Power sources for autonomous underwater vehicles. J Power Sources. 2006;162(2):935.

    Article  CAS  Google Scholar 

  2. Medeiros MG, Dow EG. Magnesium-solution phase catholyte seawater electrochemical system. J Power Sources. 1999;80(1–2):78.

    Article  CAS  Google Scholar 

  3. Medeiros MG, Bessette RR, Deschenes CM, Patrissi CJ, Carreiro LG, Tucker SP, Atwater DW. Magnesium-solution phase catholyte semi-fuel cell for undersea vehicles. J Power Sources. 2004;136(2):226.

    Article  CAS  Google Scholar 

  4. Shu C, Wang E, Jiang L, Tang Q, Sun G. Studies on palladium coated titanium foams cathode for Mg-H2O2 fuel cells. J Power Sources. 2012;208:159.

    Article  CAS  Google Scholar 

  5. Hasvold Ø, Johansen KH, Mollestad O, Forseth S, Størkersen N. The alkaline aluminium/hydrogen peroxide power source in the Hugin II unmanned underwater vehicle. J Power Sources. 1999;80(1–2):254.

    Article  CAS  Google Scholar 

  6. Hasvold Ø. The alkaline aluminium hydrogen peroxide semi-fuel cell for the HUGIN 3000 autonomous underwater vehicle. In: Proceedings of Autonomous Underwater Vehicles. San Antonio; 2002. 89.

  7. Sun LM, Wen FC, Li S, Zhang ZX. High efficient rGO-modified Ni foam supported Pd nanoparticles (PRNF) composite synthesized using spontaneous reduction for hydrogen peroxide electroreduction and electrooxidation. J Power Sources. 2021;481:228878.

    Article  CAS  Google Scholar 

  8. Song C, Li B, Ye K, Zhu K, Cao D, Cheng K, Wang G, Pan Y. Investigation of palladium nanoparticles supported on metallic titanium pillars as a novel electrode for hydrogen peroxide electroreduction in acidic medium. Electrochim Acta. 2017;250:251.

    Article  CAS  Google Scholar 

  9. Wang X, Ye K, Gao Y, Zhang H, Cheng K, Xiao X, Wang G, Cao D. Preparation of porous palladium nanowire arrays and their catalytic performance for hydrogen peroxide electroreduction in acid medium. J Power Sources. 2016;303:278.

    Article  CAS  Google Scholar 

  10. Yang F, Cheng K, Mo Y, Yu L, Yin J, Wang G, Cao D. Direct peroxide–peroxide fuel cell—part 1: the anode and cathode catalyst of carbon fiber cloth supported dendritic Pd. J Power Sources. 2012;217:562.

    Article  CAS  Google Scholar 

  11. Morais AL, Salgado JRC, Šljukić B, Santos DMF, Sequeira CAC. Electrochemical behaviour of carbon supported Pt electrocatalysts for H2O2 reduction. Int J Hydrogen Energy. 2012;37(19):14143.

    Article  CAS  Google Scholar 

  12. Briega-Martos V, Herrero E, Feliu JM. Hydrogen peroxide and oxygen reduction studies on Pt stepped surfaces: surface charge effects and mechanistic consequences. Electrochim Acta. 2020;334:135452.

    Article  CAS  Google Scholar 

  13. Yang W, Yang S, Sun W, Sun G, Xin Q. Nanostructured palladium-silver coated nickel foam cathode for magnesium–hydrogen peroxide fuel cells. Electrochim Acta. 2006;52(1):9.

    Article  CAS  Google Scholar 

  14. Yang F, Cheng K, Wu T, Zhang Y, Yin J, Wang G, Cao D. Dendritic palladium decorated with gold by potential pulse electrodeposition: enhanced electrocatalytic activity for H2O2 electroreduction and electrooxidation. Electrochim Acta. 2013;99:54.

    Article  CAS  Google Scholar 

  15. Yang F, Cheng K, Wu T, Zhang Y, Yin J, Wang G, Cao D. Au–Pd nanoparticles supported on carbon fiber cloth as the electrocatalyst for H2O2 electroreduction in acid medium. J Power Sources. 2013;233:252.

    Article  CAS  Google Scholar 

  16. Bessette RR, Medeiros MG, Patrissi CJ, Deschenes CM, LaFratta CN. Development and characterization of a novel carbon fiber based cathode for semi-fuel cell applications. J Power Sources. 2001;96(1):240.

    Article  CAS  Google Scholar 

  17. Sun L, Shi L, Zhang S, He W, Zhang Y. Cu- and Co-modified Pd/C nanoparticles as the high performance cathodic catalysts for Mg-HO2 semi-fuel cell. Fuel Cells. 2017;17(6):898.

    Article  CAS  Google Scholar 

  18. Wang LP, Shen QX, Tian L, Yang N, Xie G, Li B. Preparation of PtCo composite nanowires and characterization of electrocatalytic performance for oxygen reduction reaction. Chin J Rare Metals. 2019;43(4):367.

    CAS  Google Scholar 

  19. Liu P, Lin SJ, Yang ML, Chen YJ, Zhang M, Cheng FL. Preparation of silver-palladium fractal composite for ethanol electro-oxidation in alkaline media. Chin J Rare Met. 2017;41(6):635.

    Google Scholar 

  20. Jin Z, Wang L, Chen T, Liang J, Fan X. Transition metal/metal oxide interface (Ni–Mo–O/Ni4Mo) stabilized on N-doped carbon paper for enhanced hydrogen evolution reaction in alkaline conditions. Ind Eng Chem Res. 2021;60(14):5145.

    Article  CAS  Google Scholar 

  21. Zhao Z, Qin F, Kasiraju S, Xie L, Alam MK, Chen S, Wang D, Ren Z, Wang Z, Grabow LC, Bao J. Vertically aligned MoS2/Mo2C hybrid nanosheets grown on carbon paper for efficient electrocatalytic hydrogen evolution. ACS Catal. 2017;7(10):7312.

    Article  CAS  Google Scholar 

  22. Chen Y, Zhang J, Guo P, Liu H, Wang Z, Liu M, Zhang T, Wang S, Zhou Y, Lu X, Zhang J. Coupled heterostructure of Mo-Fe selenide nanosheets supported on carbon paper as an integrated electrocatalyst for efficient hydrogen evolution. ACS Appl Mater Interfaces. 2018;10(33):27787.

    Article  CAS  Google Scholar 

  23. Amirfakhri SJ, Pascone PA, Meunier JL, Berk D. Fe-N-doped graphene as a superior catalyst for H2O2 reduction reaction in neutral solution. J Catal. 2015;323:55.

    Article  CAS  Google Scholar 

  24. Kim J, Kim C, Jeon IY, Baek JB, Ju YW, Kim G. A new strategy for outstanding performance and durability in acidic fuel cells: a small amount Pt anchored on Fe, N co-doped graphene nanoplatelets. ChemElectroChem. 2018;5(19):2857.

    Article  CAS  Google Scholar 

  25. Wang R, Yan M, Li H, Zhang L, Peng B, Sun J, Liu D, Liu S. FeS2 nanoparticles decorated graphene as microbial-fuel-cell anode achieving high power density. Adv Mater. 2018;30(22):1800618.

    Article  CAS  Google Scholar 

  26. Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M. Thin-film particles of graphite oxide 1: high-yield synthesis and flexibility of the particles. Carbon. 2004;42(14):2929.

    CAS  Google Scholar 

  27. Wang D, Chang YX, Li YR, Zhang SL, Xu SL. Well-dispersed NiCoS2 nanoparticles/rGO composite with a large specific surface area as an oxygen evolution reaction electrocatalyst. Rare Met. 2021;40(11):3156.

    Article  CAS  Google Scholar 

  28. Zhang J, Zhang K, Yang J, Lee GH, Shin J, Wing-hei Lau V, Kang YM. Bifunctional conducting polymer coated CoP core-shell nanowires on carbon paper as a free-standing anode for sodium ion batteries. Adv Energy Mater. 2018;8(20):1800283.

    Article  CAS  Google Scholar 

  29. Chao L, Qin Y, He J, Ding D, Chu F. Robust three dimensional N-doped graphene supported Pd nanocomposite as efficient electrocatalyst for methanol oxidation in alkaline medium. Int J Hydrogen Energy. 2017;42(22):15107.

    Article  CAS  Google Scholar 

  30. Shen K, Lin JP, Xia Q, Dai L, Zhou GJ, Guo YL, Lu GZ, Zhan WC. Tuning performance of Pd/Sn0.9Ce0.1O2 catalyst for methane combustion by optimizing calcination temperature of support. Rare Met. 2019;38(2):107.

    Article  CAS  Google Scholar 

  31. Zhou GF, Ma J, Bai S, Wang L, Guo Y. CO catalytic oxidation over Pd/CeO2 with different chemical states of Pd. Rare Met. 2020;39(7):800.

    Article  CAS  Google Scholar 

  32. Strong V, Dubin S, El-Kady MF, Lech A, Wang Y, Weiller BH, Kaner RB. Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices. ACS Nano. 2012;6(2):1395.

    Article  CAS  Google Scholar 

  33. Li C, Chen J, Wu Y, Cao W, Sang S, Wu Q, Liu H, Liu K. Enhanced oxygen evolution reaction activity of NiFe layered double hydroxide on nickel foam-reduced graphene oxide interfaces. Int J Hydrogen Energy. 2019;44(5):2656.

    Article  CAS  Google Scholar 

  34. Gao W, Alemany LB, Ci L, Ajayan PM. New insights into the structure and reduction of graphite oxide. Nat Chem. 2009;1(5):403.

    Article  CAS  Google Scholar 

  35. Zhou Y, Bao Q, Tang LAL, Zhong Y, Loh KP. Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem Mater. 2009;21(13):2950.

    Article  CAS  Google Scholar 

  36. Ananthoju B, Biroju RK, Theis W, Dryfe RAW. Controlled electrodeposition of gold on graphene: maximization of the defect-enhanced Raman scattering response. Small. 2019;15(48):e1901555.

    Article  CAS  Google Scholar 

  37. Wang P, Zhang G, Jiao H, Liu L, Zheng X. Pd/graphene nanocomposite as highly active catalyst for the Heck reactions. Appl Catal A. 2014;489(1):188.

    Google Scholar 

  38. Wang H, Zhou Y, Zhao Q, Zhang X, Di L. NH3 plasma synthesis of N-doped activated carbon supported Pd catalysts with high catalytic activity and stability for HCOOH dehydrogenation. Int J Hydrogen Energy. 2020;45(41):21380.

    Article  CAS  Google Scholar 

  39. Jin Y, Han D, Jia W, Huang G, Li F, Chen X, Li R, Zheng M, Gao W. B-N codoped graphene as a novel support for Pd catalyst with enhanced catalysis for ethanol electrooxidation in alkaline medium. J Electrochem Soc. 2017;164(6):F638.

    Article  CAS  Google Scholar 

  40. Chen D, He Z, Pei SE, Huang LA, Shao H, Jin Y, Wang J. Pd nanoparticles supported on N and P dual-doped graphene as an excellent composite catalyst for methanol electro-oxidation. J Alloys Compd. 2019;785:781.

    Article  CAS  Google Scholar 

  41. Yu P, Wang L, Liu X, Fu HG, Yu HT. CoWO4 nanopaticles wrapped by RGO as high capacity anode material for lithium ion batteries. Rare Met. 2017;36(5):411.

    Article  CAS  Google Scholar 

  42. Caglar A, Cogenli MS, Yurtcan AB, Kivrak H. Effective carbon nanotube supported metal (M=Au, Ag Co, Mn, Ni, V, Zn) core Pd shell bimetallic anode catalysts for formic acid fuel cells. Renew Energy. 2020;150:78.

    Article  CAS  Google Scholar 

  43. El-Nowihy GH, El-Deab MS. Boosted electrocatalytic oxidation of formic acid at CoOx/Pd/Au nanoparticle-based ternary catalyst. Int J Hydrogen Energy. 2020;45(41):21297.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21463017), the Natural Science Foundation of Inner Mongolia (No. 2018BS02005), the Natural Science Foundation of Jiangsu Province (No. BK20171169), the Natural Science Foundation of Jiangsu Higher Education Institutions of China (Nos. 19KJA430020 and 21KJA150005), Jiangsu Qing Lan Project (2020), and the Opening Foundation of Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Song or Li-Mei Sun.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3485 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, FC., Li, SRGG., Chen, Y. et al. Corrugated rGO-supported Pd composite on carbon paper for efficient cathode of Mg-H2O2 semi-fuel cell. Rare Met. 41, 2655–2663 (2022). https://doi.org/10.1007/s12598-022-01964-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-01964-9

Keywords

Navigation