Skip to main content
Log in

Silicon-carbide fiber-reinforced polymer electrolyte for all-solid-state lithium-metal batteries

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Silicon carbide (SiC) with various morphologies was employed as reinforcing fillers for poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs). Specifically, the SiC nanoparticles with an average size of 5–10 µm endow a significant enhancement of the interaction between carbon atoms for the fillers and the oxygen atoms from the PEO–lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) matrix, which provides rapid transport channels for mobile Li+ and enhances the mechanical strength of SPEs. The SPEs reinforced with one-dimensional SiC nanoparticles exhibit superior Li+ conduction, good mechanical property, and uniform Li plating. Thus, a dendrite-free plating of lithium for 0.58 mAh at 0.1 mA·cm–2 and excellent cycle stability at various current densities for 250 h are achieved in Li/Li symmetric cells using SPEs electrolytes with 5.0 wt% SiC nanoparticles. Moreover, the LiFePO4/Li full cells assembled using SPEs electrolytes with 5.0 wt% SiC nanoparticles provide a capacity of 151.5 mAh·g–1 at 0.1 mA·cm–2 (55 °C), and maintained a Coulombic efficiency of 99% for 120 cycles.

Graphical abstract

摘要

将四种不同直径和长径比的一维SiC晶须添加到PEO/LiTFSI聚合物中制备全固态电池用复合锂离子固态电解质 (solid polymer electrolytes, 简称SPEs), 分析其组织结构、力学行为和电化学性能. 研究发现, SiC晶须掺杂可以有效提高PEO/LiTFSI聚合物的机械强度, 固态电解质SiC表面与PEO/LiTFSI基体中的氧离子具有比较强的相互作用为锂离子快速迁移提供传输通道. SiC晶须均匀分布在PEO/LiTFSI聚合物电解质中, 直径 5–10 µm、长度~50 µm 的一维SiC晶须强化SPEs展现出最优的锂离子导电性和力学性能. 采用SiC晶须含量为5 wt%电解质组装的Li/SPE/Li对称电池, 不同电流密度条件下经过250次充放电循环仍展现出良好的稳定性. 此外, 采用SiC含量为5 wt%电解质组装的LiFePO4/SPE/Li全固态电池, 在55°C、电流0.1 mA·cm–2时其初始放电电容量达到151.5 mAh·g–1, 拥有稳定的循环性和比较高的库伦效率.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Armand M, Tarascon JM. Building better batteries. Nature. 2008;451:652. https://doi.org/10.1038/451652a.

    Article  CAS  Google Scholar 

  2. Hu YS. Batteries: getting solid. Nat Energy. 2016;1:16042. https://doi.org/10.1038/nenergy.2016.42.

    Article  CAS  Google Scholar 

  3. Ji YR, Weng ST, Li XY. Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review. Rare Met. 2020; 39(3):205. https://doi.org/10.1007/s12598-020-01369-6.

    Article  CAS  Google Scholar 

  4. Nakamura T, Amezawa K, Kulisch J, Zeier WG, Janek J. Guidelines for all-solid-state battery sesign and electrode buffer layers based on chemical potential profile calculation. ACS Appl Mater Interfaces. 2019;11:19968. https://doi.org/10.1021/acsami.9b03053.

    Article  CAS  Google Scholar 

  5. Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017;117:10403. https://doi.org/10.1021/acs.chemrev.7b00115.

    Article  CAS  Google Scholar 

  6. Yan CL. Realizing high performance of solid-state lithium metal batteries by flexible ceramic/polymer hybrid solid electrolyte. Rare Met. 2020; 39(5):458. https://doi.org/10.1007/s12598-020-01417-1.

    Article  CAS  Google Scholar 

  7. Cheng XB, Zhao CZ, Yao YX, Liu H, Zhang Q. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes. Chem. 2019;5:74. https://doi.org/10.1016/j.chempr.2018.12.002.

    Article  CAS  Google Scholar 

  8. Zhao Q, Stalin S, Zhao CZ, Archer LA. Designing solid-state electrolytes for safe, energy-dense batteries. Nat Rev Mater. 2020;5:229. https://doi.org/10.1038/s41578-019-0165-5.

    Article  CAS  Google Scholar 

  9. Cao D, Sun X, Li Q, Natan A, Xiang P, Zhu H. Lithium dendrite in all-solid-state batteries: growth mechanisms, suppression strategies, and characterizations. Matter. 2020;3:57. https://doi.org/10.1016/j.matt.2020.03.015.

    Article  Google Scholar 

  10. Li Y, Xu B, Xu H, Duan H, Lu X, Xin S, Zhou W, Xue L, Fu G, Manthiram A, Goodenough JB. Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries. Angew Chem Int Ed Engl. 2017;56:753. https://doi.org/10.1002/anie.201608924.

    Article  CAS  Google Scholar 

  11. Chen L, Li Y, Li SP, Fan LZ, Nan CW, Goodenough JB. PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”. Nano Energy. 2018;46:176. https://doi.org/10.1002/anie.201608924.

    Article  CAS  Google Scholar 

  12. Xu B, Li X, Yang C, Li Y, Grundish NS, Chien PH, Dong K, Manke I, Fang R, Wu N, Xu H, Dolocan A, Goodenough JB. Interfacial chemistry enables stable cycling of all-solid-state Li metal batteries at high current densities. J Am Chem Soc. 2021;143:6542. https://doi.org/10.1021/jacs.1c00752.

    Article  CAS  Google Scholar 

  13. Wu N, Chien PH, Qian Y, Li Y, Xu H, Grundish NS, Xu B, Jin H, Hu YY, Yu G, Goodenough JB. Enhanced surface interactions enable fast Li+ conduction in oxide/polymer composite electrolyte. Angew Chem Int Ed Engl. 2020;59:4131. https://doi.org/10.1002/anie.201914478.

    Article  CAS  Google Scholar 

  14. Wu N, Chien PH, Li Y, Dolocan A, Xu H, Xu B, Grundish NS, Jin H, Hu YY, Goodenough JB. Fast Li+ conduction mechanism and interfacial chemistry of a NASICON/Polymer composite electrolyte. J Am Chem Soc. 2020;142:2497. https://doi.org/10.1021/jacs.9b12233.

    Article  CAS  Google Scholar 

  15. Chen S, Wang J, Zhang Z, Wu L, Yao L, Wei Z, Deng Y, Xie D, Yao X, Xu X. In-situ preparation of poly(ethylene oxide)/Li3PS4 hybrid polymer electrolyte with good nanofiller distribution for rechargeable solid-state lithium batteries. J Power Sources. 2018;387:72. https://doi.org/10.1016/j.jpowsour.2018.03.016.

    Article  CAS  Google Scholar 

  16. Xu H, Chien PH, Shi J, Li Y, Wu N, Liu Y, Hu YY, Goodenough JB. High-performance all-solid-state batteries enabled by salt bonding to perovskite in poly(ethylene oxide). Proc Natl Acad Sci USA. 2019;116:18815. https://doi.org/10.1073/pnas.1907507116.

    Article  CAS  Google Scholar 

  17. Kalnaus S, Sabau AS, Tenhaeff WE, Dudney NJ, Daniel C. Design of composite polymer electrolytes for Li ion batteries based on mechanical stability criteria. J Power Sources. 2012;201:280. https://doi.org/10.1016/j.jpowsour.2011.11.020.

    Article  CAS  Google Scholar 

  18. Liu R, He P, Wu Z, Guo F, Huang B, Wang Q, Huang Z, Wang C, Li Y. PEO/hollow mesoporous polymer spheres composites as electrolyte for all solid state lithium ion battery. J Electroanal Chem. 2018;822:105. https://doi.org/10.1016/j.jelechem.2018.05.021.

    Article  CAS  Google Scholar 

  19. Liu R, Wu Z, He P, Fan H, Huang Z, Zhang L, Chang X, Liu H, Wang C, Li Y. A self-standing, UV-cured semi-interpenetrating polymer network reinforced composite gel electrolytes for dendrite-suppressing lithium ion batteries. J Mater. 2019;5:185. https://doi.org/10.1016/j.jmat.2018.12.006.

    Article  Google Scholar 

  20. Zou Z, Li Y, Lu Z, Wang D, Cui Y, Guo B, Li Y, Liang X, Feng J, Li H, Nan CW, Armand M, Chen L, Xu K, Shi S. Mobile ions in composite solids. Chem Rev. 2020;120:4169. https://doi.org/10.1021/acs.chemrev.9b00760.

    Article  CAS  Google Scholar 

  21. Wang X, Zhai H, Qie B, Cheng Q, Li A, Borovilas J, Xu B, Shi C, Jin T, Liao X, Li Y, He X, Du S, Fu Y, Dontigny M, Zaghib K, Yang Y. Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte. Nano Energy. 2019;60:205. https://doi.org/10.1016/j.nanoen.2019.03.051.

    Article  Google Scholar 

  22. Zhu P, Yan C, Dirican M, Zhu J, Zang J, Selvan RK, Chung CC, Jia H, Li Y, Kiyak Y, Wu N, Zhang X. Li0.33La0.557TiO3 ceramic nanofiber-enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. J Mater Chem A. 2018;6:4279. https://doi.org/10.1039/C7TA10517G.

    Article  CAS  Google Scholar 

  23. Chen H, Adekoya D, Hencz L, Ma J, Chen S, Yan C, Zhao H, Cui G, Zhang S. Stable seamless interfaces and rapid ionic conductivity of Ca–CeO2/LiTFSI/PEO composite electrolyte for high-rate and high-voltage all-solid-state battery. Adv Energy Mater. 2020;10:2000049. https://doi.org/10.1002/aenm.202000049.

    Article  CAS  Google Scholar 

  24. Yu W, Deng N, Yan Z, Gao L, Cheng K, Tian X, Tang L, Cheng B, Kang W. Mg-based inorganic nanofibers constructing fast and multi-dimensionalion conductive pathways for all-solid-state lithium metal batteries. J Energy Chem. 2022;67:684. https://doi.org/10.1016/j.jechem.2021.11.015.

    Article  Google Scholar 

  25. Gao L, Wu N, Deng N, Li Z, Li J, Che Y, Cheng B, Kang W, Liu R, Li Y. Optimized CeO2 nanowires with rich surface oxygen vacancies enable fast Li-ion conduction in composite polymer electrolytes. Energy Environ Mater. 2021. https://doi.org/10.1002/EEM2.12272.

    Article  Google Scholar 

  26. Gong Y, Fu K, Xu S, Dai J, Hamann TR, Zhang L, Hitz GT, Fu Z, Ma Z, McOwen DW, Han X, Hu L, Wachsman ED. Lithium-ion conductive ceramic textile: a new architecture for flexible solid-state lithium metal batteries. Mater Today. 2018;21:594. https://doi.org/10.1016/j.mattod.2018.01.001.

    Article  CAS  Google Scholar 

  27. Zheng J, Tang M, Hu YY. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew Chem Int Ed Engl. 2016;55:12538. https://doi.org/10.1002/ange.201607539.

    Article  CAS  Google Scholar 

  28. Wei WQ, Liu BQ, Gan YQ. Protecting lithium metal anode in all-solid-state batteries with a composite electrolyte. Rare Met. 2021;40(2):409. https://doi.org/10.1007/s12598-020-01501-6.

    Article  CAS  Google Scholar 

  29. Li Z, Huang HM, Zhu JK, Wu JF, Yang H, Wei L, Guo X. Ionic conduction in composite polymer electrolytes: case of PEO:Ga-LLZO composites. ACS Appl Mater Interfaces. 2019;11:784. https://doi.org/10.1021/acsami.8b17279.

    Article  CAS  Google Scholar 

  30. Xu L, Li J, Shuai H, Luo Z, Wang B, Fang S, Zou G, Hou H, Peng H, Ji X. Recent advances of composite electrolytes for solid-state Li batteries. J Energy Chem. 2022;67:524. https://doi.org/10.1016/j.jechem.2021.10.038.

    Article  Google Scholar 

  31. Liu Y, Xu B, Zhang W, Li L, Lin Y, Nan C. Composition modulation and structure design of inorganic-in-polymer composite solid electrolytes for advanced lithium batteries. Small. 2020;16:1902813. https://doi.org/10.1002/smll.201902813.

    Article  CAS  Google Scholar 

  32. Randau S, Weber DA, Kötz O, Koerver R, Braun P, Weber A, Ivers-Tiffée E, Adermann T, Kulisch J, Zeier WG, Richter FH, Janek J. Benchmarking the performance of all-solid-state lithium batteries. Nat Energy. 2020;5:259.

    Article  CAS  Google Scholar 

  33. Han D, Mei H, Xiao S, Dassios KG, Cheng L. A review on the processing technologies of carbon nanotube/silicon carbide composites. J Eur Ceram Soc. 2018;38:3695. https://doi.org/10.1016/j.jeurceramsoc.2018.04.033.

    Article  CAS  Google Scholar 

  34. Shen D, Zhan Z, Liu Z, Cao Y, Zhou L, Liu Y, Dai W, Nishimura K, Li C, Lin CT, Jiang N, Yu J. Enhanced thermal conductivity of epoxy composites filled with silicon carbide nanowires. Sci Rep. 2017;7:2606. https://doi.org/10.1038/s41598-017-02929-0.

    Article  CAS  Google Scholar 

  35. Huang Y, Hu J, Yao Y, Zeng X, Sun J, Pan G, Sun R, Xu JB, Wong CP. Manipulating orientation of silicon carbide nanowire in polymer composites to achieve high thermal conductivity. Adv Mater Interfaces. 2017;4:1700446. https://doi.org/10.1002/admi.201700446.

    Article  CAS  Google Scholar 

  36. Durandurdu M. Electronic and mechanical properties of wurtzite type SiC nanowires. Phys Status Solidi (b). 2006;243:R37. https://doi.org/10.1002/pssb.200642041.

    Article  CAS  Google Scholar 

  37. Li R, Qing Y, Zhao J, Huang S. SiC-coated carbon nanotubes with enhanced oxidation resistance and stable dielectric properties. Materials (Basel). 2021;14:2770. https://doi.org/10.3390/ma14112770.

    Article  CAS  Google Scholar 

  38. Yang Z, Xia Y, Mokaya R. High surface area silicon carbide whiskers and nanotubes nanocast using mesoporous silica. Chem Mater. 2002;16:3877. https://doi.org/10.1021/cm048950x.

    Article  CAS  Google Scholar 

  39. Kuang J, Cao W, Viehland D. Silicon carbide whiskers: preparation and high dielectric permittivity. J Am Ceram Soc. 2013;96:2877. https://doi.org/10.1111/jace.12393.

    Article  CAS  Google Scholar 

  40. Li Y, Huang X, Hu Z, Jiang P, Li S, Tanaka T. Large dielectric constant and high thermal conductivity in poly(vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites. ACS Appl Mater Interfaces. 2011;3:4396. https://doi.org/10.1021/am2010459.

    Article  CAS  Google Scholar 

  41. Hao JY, Wang YY, Tong XL, Jin GQ, Guo XY. SiC nanomaterials with different morphologies for photocatalytic hydrogen production under visible light irradiation. Catal Today. 2013;212:220. https://doi.org/10.1016/j.cattod.2012.09.023.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Shandong Province Natural Science Foundation (No. ZR2020ME001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Qing Wei or Hao Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, WQ., Liu, BQ., Wang, YQ. et al. Silicon-carbide fiber-reinforced polymer electrolyte for all-solid-state lithium-metal batteries. Rare Met. 41, 3774–3782 (2022). https://doi.org/10.1007/s12598-022-02081-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02081-3

Keywords

Navigation