Skip to main content

Advertisement

Log in

Enhanced performance of core–shell structured sodium manganese hexacyanoferrate achieved by self-limiting Na+ –Cs+ ion exchange for sodium-ion batteries

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Sodium manganese hexacyanoferrate (NaMnHCF) is a promising cathode material for sodium-ion batteries (SIBs) due to its low cost and high energy density. The Jahn–Teller effect of Mn, however, leads to the poor structural stability of NaMnHCF, resulting in undesired electrochemical performance. Herein, we developed a novel coating strategy and obtained a core–shell structured NaMnHCF through facile Na+–Cs+ ion exchange, which naturally produced a robust and insoluble Cs-rich surface layer (CsMnHCF) with several nanometers in thickness on pristine NaMnHCF. It is shown that the Cs-rich surface plays a positive role in the stability of the NaMnHCF structure by prohibiting the leakage of crystal water, stabilizing the solid–liquid interfaces, and solidifying crystal structure. The electrochemical performance of the core–shell NaMnHCF is dramatically improved with a discharge capacity of 76.3 mAh·g−1 after 1000 cycles at 1.0C and a reversible capacity of 87.0 mAh·g−1 at 10.0C, which is much superior to that of the pristine NaMnHCF with only 26.6 mAh·g−1 after 400 cycles and 31 mAh·g−1 at 10.0C. This work reports a new method for the synthesis of core–shell NaMnHCF and provides a novel perspective for the development of advanced NaMnHCF cathode for SIBs.

Graphical abstract

摘要

亚铁氰锰钠 (NaMnHCF) 以其低廉的成本, 较高的能量密度, 成为有潜力的钠离子电池正极材料。 然而, 由于锰的Jahn–Teller效应, 亚铁氰锰钠结构稳定性较差, 这导致较差的电化学性能。 本研究中, 我们采用简易的Na+–Cs+离子交换方法, 在亚铁氰锰钠表面制备出富Cs壳层, 形成核壳结构的材料。 表征分析显示, 富Cs壳层通过抑制水的脱出, 稳定颗粒-电解液界面和强化晶格结构来稳定亚铁氰锰钠的结构。 电化学测试表明, 核壳结构的亚铁氰锰钠在1.0C的电流密度下, 循环1000周后仍然可以提供76.3 mAh·g-1的比容量, 相比于原始亚铁氰锰钠在400周后只能提供26.6 mAh·g-1的比容量, 包覆后的样品循环性能大幅度提升。 除此之外, 在10.0C的电流密度下, 核壳结构的亚铁氰锰钠可以表现出87 mAh·g-1的可逆容量, 而原始样品只表现出31 mAh·g-1的可逆容量。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu S, Li XZ, Huang B, Yang JW, Chen QQ, Li YW, Xiao SH. Controllable construction of yolk-shell Sn-Co@void@C and its advantages in Na-ion storage. Rare Met. 2021;40(9):2392. https://doi.org/10.1007/s12598-021-01729-w.

    Article  CAS  Google Scholar 

  2. Li WJ, Han C, Cheng G, Chou SL, Liu HK, Dou SX. Chemical properties, structural properties, and energy storage applications of prussian blue analogues. Small. 2019;15(32):1900470. https://doi.org/10.1002/smll.201900470.

    Article  CAS  Google Scholar 

  3. Wang D, Cai P, Zou GQ, Hou HS, Ji XB, Tian Y, Long Z. Ultra-stable carbon-coated sodium vanadium phosphate as cathode material for sodium-ion battery. Rare Met. 2022;41(1):115. https://doi.org/10.1007/s12598-021-01743-y.

    Article  CAS  Google Scholar 

  4. Zuo DX, Wang CP, Wu JW, Qiu HJ, Zhang Q, Han JJ, Liu XJ. Comprehensive study of Na2-xMnFe(CN)6 center dot yH2O cathodes with cube morphology: structure, valence state and electrochemical properties. Solid State Ion. 2019;340: 115025. https://doi.org/10.1016/j.ssi.2019.115025.

    Article  CAS  Google Scholar 

  5. Jiang XL, Hu FD, Wang WX, Qiu JX, Zheng XW. Hierarchical polyhedron K2CoFe(CN)6 as promising cathode for rechargeable batteries. J Alloys Compd. 2019;774:315. https://doi.org/10.1016/j.jallcom.2018.09.314.

    Article  CAS  Google Scholar 

  6. Xue LG, Li YT, Gao HC, Zhou WD, Lu XJ, Kaveevivitchai W, Manthiram A, Goodenough JB. Low-cost high-energy potassium cathode. J Am Chem Soc. 2017;139(6):2164. https://doi.org/10.1021/jacs.6b12598.

    Article  CAS  Google Scholar 

  7. Huang XZ, Xu Z, Ji ZG, Sun Q. Leaching and kinetics study of valuable metals from LiNi0.5Co0.2Mn0.3O2 cathode in spent LIBs. Chin J Rare Metals. 2020;44(8):860.

    Google Scholar 

  8. Chen CJ, Wang ZG, Zhang B, Miao L, Cai J, Peng LF, Huang YY, Jiang JJ, Huang YH, Zhang LN, Xie J. Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy Storage Mater. 2017;8:161. https://doi.org/10.1016/j.ensm.2017.05.010.

    Article  Google Scholar 

  9. Song J, Wang L, Lu YH, Liu J, Guo BK, Xiao PH, Lee JJ, Yang XQ, Henkelman G, Goodenough JB. Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. J Am Chem Soc. 2015;137(7):2658. https://doi.org/10.1021/ja512383b.

    Article  CAS  Google Scholar 

  10. Xu Y, Ou MY, Liu Y, Xu J, Sun XP, Fang C, Li Q, Han JT, Huang YH. Crystallization-induced ultrafast Na-ion diffusion in nickel hexacyanoferrate for high-performance sodium-ion batteries. Nano Energy. 2020;67: 104250. https://doi.org/10.1016/j.nanoen.2019.104250.

    Article  CAS  Google Scholar 

  11. Lu K, Zhang H, Gao SY, Cheng YW, Ma HY. High rate and stable symmetric potassium ion batteries fabricated with flexible electrodes and solid-state electrolytes. Nanoscale. 2018;10(44):20754. https://doi.org/10.1039/c8nr07268j.

    Article  CAS  Google Scholar 

  12. He G, Nazar LF. Crystallite size control of Prussian white Analogues for nonaqueous potassium-ion batteries. ACS Energy Lett. 2017;2(5):1122. https://doi.org/10.1021/acsenergylett.7b00179.

    Article  CAS  Google Scholar 

  13. Phadke S, Mysyk R, Anouti M. Effect of cation (Li+, Na+, K+, Rb+, Cs+) in aqueous electrolyte on the electrochemical redox of Prussian blue analogue (PBA) cathodes. J Energy Chem. 2020;40:31. https://doi.org/10.1016/j.jechem.2019.01.025.

    Article  Google Scholar 

  14. Tang Y, Li W, Feng PY, Zhou M, Wang KL, Wang YS, Zaghib K, Jiang K. High-performance manganese hexacyanoferrate with cubic structure as superior cathode material for sodium-ion batteries. Adv Funct Mater. 2020;30:1908754. https://doi.org/10.1002/adfm.201908754.

    Article  CAS  Google Scholar 

  15. Zhao CL, Yao ZP, Zhou D, Jiang LW, Wang JL, Murzin V, Lu YX, Bai XD, Aspuru GA, Chen LQ, Hu YS. Constructing Na-Ion cathodes via alkali-site substitution. Adv Funct Mater. 2020. https://doi.org/10.1002/adfm.201910840.

    Article  Google Scholar 

  16. Hu P, Peng WB, Wang B, Xiao DD, Ahuja U, Rethore J, Aifantis KE. Concentration-gradient prussian blue cathodes for Na-ion batteries. ACS Energy Lett. 2020;5(1):100. https://doi.org/10.1021/acsenergylett.9b02410.

    Article  CAS  Google Scholar 

  17. Hu FD, Li L, Jiang XL. Hierarchical octahedral Na2MnFe(CN)6 and Na2MnFe(CN)6@Ppy as cathode materials for sodium-ion batteries. Chin J Chem. 2017;35(4):415. https://doi.org/10.1002/cjoc.201600713.

    Article  CAS  Google Scholar 

  18. Moritomo Y, Urase S, Shibata T. Enhanced battery performance in manganese hexacyanoferrate by partial substitution. Electrochim Acta. 2016;210:963. https://doi.org/10.1016/j.electacta.2016.05.205.

    Article  CAS  Google Scholar 

  19. Wang L, Lu YH, Liu J, Xu MW, Cheng JG, Zhang DW, Goodenough JB. A superior low-cost cathode for a Na-ion battery. Angew Chem Int Ed. 2013;52(7):1964. https://doi.org/10.1002/anie.201206854.

    Article  CAS  Google Scholar 

  20. Mullaliu A, Asenbauer J, Aquilanti G, Passerini S, Giorgetti M. Highlighting the reversible manganese electroactivity in Na-rich manganese hexacyanoferrate material for Li- and Na-ion storage. Small Methods. 2019;4(1):1900529. https://doi.org/10.1002/smtd.201900529.

    Article  CAS  Google Scholar 

  21. Wang H, Xu EZ, Yu SM, Li DT, Quan JJ, Xu L, Wang L, Jiang Y. Reduced graphene oxide-anchored manganese hexacyanoferrate with low interstitial H2O for superior sodium-ion batteries. ACS Appl Mater Interfaces. 2018;10(40):4222. https://doi.org/10.1021/acsami.8b11157.

    Article  CAS  Google Scholar 

  22. Zhou AJ, Cheng WJ, Wang W, Zhao Q, Xie J, Zhang WX, Gao HC, Xue LG, Li JZ. Hexacyanoferrate-type Prussian blue analogs: principles and advances toward high-performance sodium and potassium ion batteries. Adv Energy Mater. 2021;11(2):2000943. https://doi.org/10.1002/aenm.202000943.

    Article  CAS  Google Scholar 

  23. Peng FW, Yu L, Gao PY, Liao XZ, Wen JG, He YS, Tan GQ, Ren Y, Ma ZF. Highly crystalline sodium manganese ferrocyanide microcubes for advanced sodium ion battery cathodes. J Mater Chem A. 2019;7(39):22248. https://doi.org/10.1039/c9ta08603j.

    Article  CAS  Google Scholar 

  24. Jo IH, Lee SM, Kim HS, Jin BS. Electrochemical properties of NaxMnFe(CN)6·zH2O synthesized in a Taylor-Couette reactor as a Na-ion battery cathode material. J Alloys Compd. 2017;729:590. https://doi.org/10.1016/j.jallcom.2017.09.146.

    Article  CAS  Google Scholar 

  25. Shen ZL, Guo SH, Liu CL, Sun YP, Chen Z, Tu J, Liu SY, Cheng JP, Xie J, Cao GS, Zhao XB. Na-rich Prussian white cathodes for long-life sodium-ion batteries. ACS Sustain Chem Eng. 2018;6(12):16121. https://doi.org/10.1021/acssuschemeng.8b02758.

    Article  CAS  Google Scholar 

  26. Liu Y, Qiao Y, Zhang WX, Li Z, Ji X, Miao L, Yuan LX, Hu XL, Huang YH. Sodium storage in Na-rich NaxFeFe(CN)6 nanocubes. Nano Energy. 2015;12:386. https://doi.org/10.1016/j.nanoen.2015.01.012.

    Article  CAS  Google Scholar 

  27. Huang YX, Xie M, Zhang JT, Wang ZH, Jiang Y, Xiao GH, Li SJ, Li L, Wu F, Chen RJ. A novel border-rich Prussian blue synthetized by inhibitor control as cathode for sodium ion batteries. Nano Energy. 2017;39:273. https://doi.org/10.1016/j.nanoen.2017.07.005.

    Article  CAS  Google Scholar 

  28. Xie BX, Zuo PJ, Wang LG, Wang JJ, Huo H, He MX, Shu J, Li HF, Lou SF, Yin GP. Achieving long-life Prussian blue analogue cathode for Na-ion batteries via triple-cation lattice substitution and coordinated water capture. Nano Energy. 2019;61:201. https://doi.org/10.1016/j.nanoen.2019.04.059.

    Article  CAS  Google Scholar 

  29. Peng J, Wang JS, Yi HC, Hu WJ, Yu YH, Yin JW, Shen Y, Liu Y, Luo JiH XuY, Wei P, Li YY, Jin Y, Ding Y, Miao L, Jiang JJ, Han JT, Huang YH. A Dual-insertion type sodium-ion full cell based on high-quality ternary-metal Prussian blue analogs. Adv Energy Mater. 2018. https://doi.org/10.1002/aenm.201702856.

    Article  Google Scholar 

  30. Zhou AJ, Xu ZM, Gao HC, Xue LG, Li JZ, Goodenough JB. Size-, water-, and defect-regulated potassium manganese hexacyanoferrate with superior cycling stability and rate capability for low-cost sodium-ion batteries. Small. 2019;15(42):1902420. https://doi.org/10.1002/smll.201902420.

    Article  CAS  Google Scholar 

  31. Peng FW, Yu L, Yuan SQ, Liao XZ, Wen JG, Tan GQ, Feng F, Ma ZF. Enhanced electrochemical performance of sodium manganese ferrocyanide by Na3(VOPO4)2F coating for sodium-ion batteries. ACS Appl Mater Interfaces. 2019;11(41):37685. https://doi.org/10.1021/acsami.9b12041.

    Article  CAS  Google Scholar 

  32. Zhu YH, Yin YB, Yang X, Sun T, Wang S, Jiang YS, Yan JM, Zhang XB. Transformation of rusty stainless-steel meshes into stable, low-cost, and binder-free cathodes for high-performance potassium-ion batteries. Angew Chem Int Ed. 2017;56(27):7881. https://doi.org/10.1002/anie.201702711.

    Article  CAS  Google Scholar 

  33. Wang ZH, Huang YX, Luo R, Wu F, Li L, Xie M, Huang JQ, Chen RJ. Ion-exchange synthesis of high-energy-density prussian blue analogues for sodium ion battery cathodes with fast kinetics and long durability. J Power Sour. 2019;436: 226868. https://doi.org/10.1016/j.jpowsour.2019.226868.

    Article  CAS  Google Scholar 

  34. Chen RJ, Huang YX, Xie M, Wang ZH, Ye YS, Li L, Wu F. Chemical inhibition method to synthesize highly crystalline Prussian blue analogs for sodium-ion battery cathodes. ACS Appl Mater Interfaces. 2016;8(46):31669. https://doi.org/10.1021/acsami.6b10884.

    Article  CAS  Google Scholar 

  35. Zhao Q, Wang W, Li YT, Wu N, Guo YD, Cheng WJ, Sun WW, Li JZ, Zhou AJ. Ion-exchange surface modification enhances cycling stability and kinetics of sodium manganese hexacyanoferrate cathode in sodium-ion batteries. Electrochim Acta. 2021;390: 138842. https://doi.org/10.1016/j.electacta.2021.138842.

    Article  CAS  Google Scholar 

  36. Oliver TM, González MM, Osiry H, Ramos SG, González I. Electronic density distribution of Mn–N bonds by a tuning effect through partial replacement of Mn by Co or Ni in a sodium-rich hexacyanoferrate and its influence on the stability as a cathode for Na-ion batteries. Dalton Trans. 2018;47(46):16492. https://doi.org/10.1039/c8dt03595d.

    Article  CAS  Google Scholar 

  37. Yin JW, Shen Y, Li C, Fan CY, Sun SX, Liu Y, Peng J, Qing L, Han JT. In situ self-assembly of core–shell multimetal prussian blue analogues for high-performance sodium-ion batteries. Chemsuschem. 2019;12:4786. https://doi.org/10.1002/cssc.201902013.

    Article  CAS  Google Scholar 

  38. Wang BQ, Han Y, Chen YT, Xu YJ, Pan HG, Sun WP, Liu SY, Yan M, Jiang YZ. Gradient substitution: an intrinsic strategy towards high performance sodium storage in Prussian blue-based cathodes. J Mater Chem A. 2018;6(19):8947. https://doi.org/10.1039/c8ta02291g.

    Article  CAS  Google Scholar 

  39. Uemura T, Kitagawa S. Prussian blue nanoparticles protected by poly(vinylpyrrolidone). J Am Chem Soc. 2003;125(26):7814. https://doi.org/10.1021/ja0356582.

    Article  CAS  Google Scholar 

  40. Li WJ, Chou SL, Wang JZ, Wang JL, Gu QF, Liu HK, Dou SX. Multifunctional conducing polymer coated Na1+xMnFe(CN)6 cathode for sodium-ion batteries with superior performance via a facile and one-step chemistry approach. Nano Energy. 2015;13:200. https://doi.org/10.1016/j.nanoen.2015.02.019.

    Article  CAS  Google Scholar 

  41. Qiao Y, Wei GY, Cui JB, Zhang MM, Cheng XG, He DD, Li S, Liu Y. Prussian blue coupling with zinc oxide as a protective layer: an efficient cathode for high-rate sodium-ion batteries. ChemComm. 2019;55(4):549. https://doi.org/10.1039/c8cc07951j.

    Article  CAS  Google Scholar 

  42. Liang J, Tian B, Li SQ, Jiang CZ, Wu W. All-printed MnHCF-MnOx-based high-performance flexible supercapacitors. Adv Energy Mater. 2020;10(12):2000022. https://doi.org/10.1002/aenm.202000022.

    Article  CAS  Google Scholar 

  43. Shen ZL, Sun YP, Xie J, Liu SY, Zhuang DG, Zhang GL, Zheng WQ, Cao GS, Zhao XB. Manganese hexacyanoferrate/graphene cathodes for sodium-ion batteries with superior rate capability and ultralong cycle life. Inorg Chem Front. 2018;5(11):2914. https://doi.org/10.1039/c8qi00768c.

    Article  CAS  Google Scholar 

  44. Ling C, Chen JJ, Mizuno F. First-principles study of alkali and alkaline earth ion intercalation in iron hexacyanoferrate: the important role of ionic radius. J Phys Chem C. 2013;117(41):21158. https://doi.org/10.1021/jp4078689.

    Article  CAS  Google Scholar 

  45. Cai P, Momen R, Tian Y, Yang LW, Zou KY, Massoudi A, Deng WT, Hou HS, Zou GQ, Ji XB. Advanced pre-diagnosis method of biomass intermediates toward high energy dual-carbon potassium-ion capacitor. Adv Energy Mater. 2021;12(5):2103221. https://doi.org/10.1002/aenm.202103221.

    Article  CAS  Google Scholar 

  46. Yang HM, Park CW, Lee KW, Lee BS, Kim I, Yoon IH. Polyvinyl alcohol-borate hydrogel containing Prussian blue for surface decontamination. J Radioanal Nucl Chem. 2018;316(3):955. https://doi.org/10.1007/s10967-018-5745-0.

    Article  CAS  Google Scholar 

  47. Huang YX, Xie M, Wang ZH, Jiang Y, Yao Y, Li SJ, Li ZH, Li L, Wu F, Chen RJ. A chemical precipitation method preparing hollow-core-shell heterostructures based on the Prussian blue analogs as cathode for sodium-ion batteries. Small. 2018;14(28):1801246. https://doi.org/10.1002/smll.201801246.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52172184 and 51763022) and the Fundamental Research Funds for the Central Universities (No. ZYGX2019J024).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji-Cheng Jiang, Dong-Huang Wang or Ai-Jun Zhou.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 993 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, YD., Jiang, JC., Xie, J. et al. Enhanced performance of core–shell structured sodium manganese hexacyanoferrate achieved by self-limiting Na+ –Cs+ ion exchange for sodium-ion batteries. Rare Met. 41, 3740–3751 (2022). https://doi.org/10.1007/s12598-022-02068-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02068-0

Keywords

Navigation