Skip to main content
Log in

Rational design of integrative CNTs@Ge nanotube films as binder-free electrodes for potassium storage

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Alloying materials hold great potential as the anodes for potassium-ion batteries (KIBs). However, the large volume changes during K+ alloying/dealloying reactions can lead to structural damage of the electrodes, resulting in fast capacity loss and shortened cycle life. Herein, we report the design of integrative carbon nanotubes@germanium (CNTs@Ge) films on copper foil by combined chemical and physical vapor deposition. Electrochemical tests show that the integrative CNTs@Ge films, working as binder-free electrodes, demonstrate higher specific capacity and rate performance in comparison with pristine Ge and CNTs electrodes. In addition, the CNTs@Ge films also deliver a long cycling stability with an areal specific capacity of 0.0417 mAh·cm−2 after 450 cycles at 1000 μA·cm−2. The enhanced potassium storage properties can be attributed to the interweaved CNTs with abundant space that can effectively buffer the volume expansion of Ge during alloying/dealloying process.

Graphical abstract

摘要

合金材料作为钾离子电池 (KIB) 的负极具有巨大的潜力。然而, K+合金化/脱合金反应过程中的大体积变化会导致电极的结构损坏, 导致容量快速损失和循环寿命缩短。在此, 我们报道了一种通过化学和物理气相沉积在铜箔上设计集成碳纳米管@锗 (CNTs@Ge)薄膜。电化学测试表明, 与原始的Ge和CNTs电极相比, 作为无粘合剂电极的CNTs@Ge膜表现出更高的比容量和倍率性能。此外, CNTs@Ge薄膜还具有长循环稳定性, 在1000 μA·cm-2下循环 450 次后面积比容量为 0.0417 mAh·cm-2。钾存储性能的增强是因为具有丰富空间的交织碳纳米管可以有效缓冲合金化/脱合金过程中Ge的体积膨胀。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhu GL, Zhao CZ, Huang JQ, He CX, Zhang J, Chen SH, Xu L, Yuan H, Zhang Q. Fast charging lithium batteries: recent progress and future prospects. Small. 2019;15(15):1805389.

    Article  Google Scholar 

  2. Zhong Y, Wu P, Ge S, Wu Y, Shi B, Shao G, Gu C, Su Z, Liu A. An egg holders-inspired structure design for large-volume-change anodes with long cycle life. J Alloys Compd. 2020;816:152497.

    Article  CAS  Google Scholar 

  3. Li C, Zhang X, Wang K, Sun X, Ma Y. High-power and long-life lithium-ion capacitors constructed from N-doped hierarchical carbon nanolayer cathode and mesoporous graphene anode. Carbon. 2018;140:237.

    Article  CAS  Google Scholar 

  4. Ma T, Liu X, Sun L, Xu Y, Zheng L, Zhang J. MoS2 nanosheets@N-carbon microtubes: a rational design of sheet on-tube architecture for enhanced lithium storage performances. Electrochim Acta. 2019;293:432.

    Article  CAS  Google Scholar 

  5. Huang HF, Gui YN, Sun F, Liu ZJ, Ning HL, Wu C, Chen LB. In situ formed three-dimensional (3D) lithium–boron (Li–B) alloy as a potential anode for next-generation lithium batteries. Rare Met. 2021;40(12):3494.

    Article  CAS  Google Scholar 

  6. Ma T, Sun L, Niu Q, Xu Y, Zhu K, Liu X, Guo X, Zhang J. N-doped carbon-coated tin sulfide/graphene nanocomposite for enhanced lithium storage. Electrochim Acta. 2019;300:131.

    Article  CAS  Google Scholar 

  7. Bruce PG, Scrosati B, Tarascon JM. Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed Engl. 2008;47(16):2930.

    Article  CAS  Google Scholar 

  8. Jaguemont J, Boulon L, Dubé Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. Appl Energy. 2016;164:99.

    Article  CAS  Google Scholar 

  9. Sun L, Xie J, Lei G, Liu X, Ma J, Zhang J. Design of double-shell TiO2@SnO2 nanotubes via atomic layer deposition for improved lithium storage. CrystEngComm. 2021;23:2992.

    Article  CAS  Google Scholar 

  10. Wang K, Li N, Xie J, Lei G, Song C, Wang S, Dai P, Liu X, Zhang J, Guo X. Dual confinement of carbon/TiO2 hollow shells enables improved lithium storage of Si nanoparticles. Electrochim Acta. 2021;372:137863.

    Article  CAS  Google Scholar 

  11. Wu CP, Xie KX, He JP, Wang QP, Ma JM, Yang S, Wang QH. SnO2 quantum dots modified N-doped carbon as high-performance anode for lithium ion batteries by enhanced pseudocapacitance. Rare Met. 2021;40(1):48.

    Article  CAS  Google Scholar 

  12. You Y, Manthiram A. Progress in high-voltage cathode materials for rechargeable sodium-ion batteries. Adv Energy Mater. 2018;8(2):1701785.

    Article  Google Scholar 

  13. Ji B, Zhang F, Song X, Tang Y. A novel potassium-ion-based dual-ion battery. Adv Mater. 2017;29(19):1700519.

    Article  Google Scholar 

  14. Ma T, Liu X, Sun L, Xu Y, Zheng L, Zhang J. Strongly coupled N-doped carbon/Fe3O4/N-doped carbon hierarchical micro/nanostructures for enhanced lithium storage performance. J Energy Chem. 2019;34:43.

    Article  Google Scholar 

  15. Kim H, Kim JC, Bianchini M, Seo DH, Rodriguez-Garcia J, Ceder G. Recent progress and perspective in electrode materials for K-ion batteries. Adv Energy Mater. 2018;8(9):1702384.

    Article  Google Scholar 

  16. Li N, Sun L, Wang K, Zhang J, Liu X. Anchoring MoSe2 nanosheets on N-doped carbon nanotubes as high performance anodes for potassium-ion batteries. Electrochim Acta. 2020;360:136983.

    Article  CAS  Google Scholar 

  17. Wang K, Li N, Sun L, Zhang J, Liu X. Free-standing N-doped carbon nanotube films with tunable defects as a high capacity anode for potassium-ion batteries. ACS Appl Mater Interfaces. 2020;12(33):37506.

    Article  CAS  Google Scholar 

  18. Sun L, Liu X, Ma T, Zneng L, Xu Y, Guo X, Zhang J. In2S3 nanosheets anchored on N-doped carbon fibers for improved lithium storage performances. Solid State Ionics. 2019;329(8):14.

    Google Scholar 

  19. Li N, Sun L, Wang K, Xu S, Zhang J, Guo X, Liu X. Sandwiched N-carbon@Co9S8@ graphene nanosheets as high capacity anode for both half and full lithium-ion batteries. J Energy Chem. 2020;51:62.

    Article  Google Scholar 

  20. Zhou M, Wang Q, Yuan Y, Luo SH, Zhang YH, Liu X. Biocarbon with different microstructures derived from corn husks and their potassium storage properties. Rare Met. 2021;40(11):3166.

    Article  CAS  Google Scholar 

  21. Qi SH, Deng JW, Zhang WC, Feng YZ, Ma JM. Recent advances in alloy-based anode materials for potassium ion batteries. Rare Met. 2020;39(9):970.

    Article  CAS  Google Scholar 

  22. Jin D, Gao Y, Zhang D, Wei Y-J, Cnen G, Qiu HL, Meng X. VO2@carbon foam as a freestanding anode material for potassium-ion batteries: first principles and experimental study. J Alloys Compd. 2020;854:156232.

    Article  Google Scholar 

  23. Sun L, Ma TT, Zhang J, Guo XX, Yan CL, Liu XH. Double-shelled hollow carbon spheres confining tin as high-performance electrodes for lithium ion batteries. Electrochim Acta. 2019;321:13467.

    Article  Google Scholar 

  24. Loaiza LC, Monconduit L, Seznec V. Si and Ge-based anode materials for Li-, Na-, and K-ion batteries: a perspective from structure to electrochemical mechanism. Small. 2020;16(5):1905260.

    Article  CAS  Google Scholar 

  25. Hwang JY, Myung ST, Sun YK. Recent progress in rechargeable potassium batteries. Adv Funct Mater. 2018;28(43):1802938.

    Article  Google Scholar 

  26. Zhang J, Liu T, Cheng X, Xia M, Zheng R, Peng N, Yu H, Shui M, Shu J. Development status and future prospect of non-aqueous potassium ion batteries for large scale energy storage. Nano Energy. 2019;60:340.

    Article  CAS  Google Scholar 

  27. Loaiza LC, Monconduit, L, Seznec V. Towards germanium layered materials as superior negative electrodes for Li-, Na-, and K-ion batteries. Batteries & Supercaps. 2020;3(5);417.

  28. Kim H, Kim JC, Bianchini M, Seo DH, Rodriguez-Garcia J, Ceder G. Recent progress and perspective in electrode materials for K-ion batteries. Adv Energy Mater. 2018;8:1702384.

    Article  Google Scholar 

  29. Yang Q, Wang Z, Xi W, He G. Tailoring nanoporous structures of Ge anodes for stable potassium-ion batteries. Electrochem Commun. 2019;101:68.

    Article  CAS  Google Scholar 

  30. Wang X, Fan L, Gong D, Zhu J, Zhang Q, Lu B. Core-shell Ge@graphene@TiO2 nanofibers as a high-capacity and cycle-stable anode for lithium and sodium ion battery. Adv Funct Mater. 2016;26(7):1104.

    Article  CAS  Google Scholar 

  31. Liu X, Wang Y, Liu Z, Wei H, Ma M, Xue R, Zhang Q, Li S. Scalable synthesis of 3D porous germanium encapsulated in nitrogen-doped carbon matrix as an ultra-long-cycle life anode for lithium-ion batteries. Dalton Trans. 2021;50(38):13476.

    Article  CAS  Google Scholar 

  32. Shen C, Yuan K, Tian T, Bai M, Wang JG, Li X, Xie K, Fu QG, Wei B. Flexible sub-micro carbon fiber@CNTs as anodes for potassium-ion batteries. ACS Appl. Mater Interfaces. 2019;11(5):5015.

    Article  CAS  Google Scholar 

  33. Liu R, Luo F, Zeng L, Liu J, Xu L, He X, Xu Q, Huang B, Qian Q, Wei M, Chen Q. Dual carbon decorated germanium-carbon composite as a stable anode for sodium/potassium-ion batteries. J Colloid Interface Sci. 2021;584:372.

    Article  CAS  Google Scholar 

  34. Xu Y, Zheng L, Yang C, Zheng W, Liu X, Zhang J. Chemiresistive sensors based on core-shell ZnO@TiO2 nanorods designed by atomic layer deposition for n-butanol detection. Sens Actuators, B. 2020;310:127846.

    Article  CAS  Google Scholar 

  35. Lou C, Yang C, Zheng W, Liu X, Zhang J. Atomic layer deposition of ZnO on SnO2 nanospheres for enhanced formaldehyde detection. Sens Actuators, B. 2021;329:129218.

    Article  CAS  Google Scholar 

  36. Xu Y, Zheng W, Liu X, Zhang L, Zheng L, Yang C, Pinna N, Zhang J. Platinum single atoms on tin oxide ultrathin films for extremely sensitive gas detection. Mater Horiz. 2020;7:1519.

    Article  CAS  Google Scholar 

  37. Li Z, Liu X, Zhou M, Zhang S, Cao S, Lei G, Lou C, Zhang J. Plasma-induced oxygen vacancies enabled ultrathin ZnO films for highly sensitive detection of triethylamine. J Hazard Mater. 2021;415:125757.

    Article  CAS  Google Scholar 

  38. Yun YH, Shanov V, Tu Y, Subramaniam S, Schulz MJ. Growth mechanism of long aligned multiwall carbon nanotube arrays by water-assisted chemical vapor deposition. J Phys Chem B. 2006;110(47):23920.

    Article  CAS  Google Scholar 

  39. Lin W, Zhang RW, Moon KS, Wong CP. Synthesis of high-quality vertically aligned carbon nanotubes on bulk copper substrate for thermal management. IEEE Trans Adv Packag. 2010;33(2):370.

    Article  CAS  Google Scholar 

  40. Zhong G, Hofmann S, Yan F, Telg H, Warner JH, Eder D, Thomsen C, Milne WI, Robertson J. Acetylene: a key growth precursor for single-walled carbon nanotube forests. J Phys Chem C. 2009;113(40):17321.

    Article  CAS  Google Scholar 

  41. Geng X, Wang S, Feng M. Effects of catalysts on preparation of carbon nanotubes. Mater Rev. 2006;20(7):112.

    Google Scholar 

  42. Choi SH, Jung KY, Kang YC. Amorphous GeOx-coated reduced graphene oxide balls with sandwich structure for long-life lithium-ion batteries. ACS Appl Mater Interfaces. 2015;7(25):13952.

    Article  CAS  Google Scholar 

  43. Negishi Y, Nagao S, Nakamura Y, Nakajima A, Kamei S, Kaya K. Visible photoluminescence of the deposited germanium–oxide prepared from clusters in the gas phase. J Appl Phys. 2000;88(10):6037.

    Article  CAS  Google Scholar 

  44. Ngo DT, Le HTT, Kim C, Lee JY, Fisher JG, Kim ID, Park CJ. Mass-scalable synthesis of 3D porous germanium–carbon composite particles as an ultra-high rate anode for lithium ion batteries. Energy Environ Sci. 2015;8(12):3577.

    Article  CAS  Google Scholar 

  45. Li Q, Zhang Z, Dong S, Li C, Ge X, Li Z, Ma J, Yin L. Ge nanoparticles encapsulated in interconnected hollow carbon boxes as anodes for sodium ion and lithium ion batteries with enhanced electrochemical performance. Part Part Syst Charact. 2017;34(3):1600115.

    Article  Google Scholar 

  46. Liu Y, Gao C, Dai L, Deng Q, Wang L, Luo J, Liu S, Hu N. The features and progress of electrolyte for potassium ion batteries. Small. 2020;16(44):2004096.

    Article  CAS  Google Scholar 

  47. Liu S, Mao J, Zhang Q, Wang Z, Pang WK, Zhang L, Du A, Sencadas V, Zhang W, Guo Z. An intrinsically non-flammable electrolyte for high-performance potassium batteries. Angew Chem Int Ed Engl. 2020;59(9):3638.

    Article  CAS  Google Scholar 

  48. Zhang R, Bao J, Wang Y, Sun CF. Concentrated electrolytes stabilize bismuth-potassium batteries. Chem Sci. 2018;9(29):6193.

    Article  CAS  Google Scholar 

  49. Zhang W, Pang WK, Sencadas V, Guo Z. Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries. Joule. 2018;2(8):1534.

    Article  CAS  Google Scholar 

  50. Zhang W, Wu Z, Zhang J, Liu G, Yang NH, Liu RS, Pang WK, Li W, Guo Z. Unraveling the effect of salt chemistry on long-durability high-phosphorus-concentration anode for potassium ion batteries. Nano Energy. 2018;53:967.

    Article  CAS  Google Scholar 

  51. Liao J, Hu Q, Yu Y, Wang H, Tang Z, Wen Z, Chen C. A potassium-rich iron hexacyanoferrate/dipotassium terephthalate@carbon nanotube composite used for K-ion full-cells with an optimized electrolyte. J Mater Chem A. 2017;5(36):19017.

    Article  CAS  Google Scholar 

  52. Qiang T, Fang J, Song Y, Ma Q, Ye M, Fang Z, Geng B. Ge@C core-shell nanostructures for improved anode rate performance in lithium-ion batteries. RSC Adv. 2015;5(22):17070.

    Article  CAS  Google Scholar 

  53. Lee YW, Kim DM, Kim SJ, Kim MC, Choe HS, Lee KH, Sohn JI, Cha SN, Kim JM, Park KW. In situ synthesis and characterization of Ge embedded electrospun carbon nanostructures as high performance anode material for lithium-ion batteries. ACS Appl. Mater Interfaces. 2016;8(11):7022.

    Article  CAS  Google Scholar 

  54. Zhang C, Pang S, Kong Q, Liu Z, Hu H, Jiang W, Han P, Wang D, Cui G. An elastic germanium-carbon nanotubes-copper foam monolith as an anode for rechargeable lithium batteries. RSC Adv. 2013;3(5):1336.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51972182 and 61971252), Shandong Provincial Natural Science Foundation (Nos. ZR2021YQ42 and ZR2020JQ27) and the Youth Innovation Team Project of Shandong Provincial Education Department (No. 2020KJN015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Hong Liu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, JY., Wang, K., Li, NN. et al. Rational design of integrative CNTs@Ge nanotube films as binder-free electrodes for potassium storage. Rare Met. 41, 3107–3116 (2022). https://doi.org/10.1007/s12598-022-01998-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-01998-z

Keywords

Navigation