Skip to main content
Log in

Cobalt phosphide nanoparticles embedded in nitrogen-doped carbon nanosheets: Promising anode material with high rate capability and long cycle life for sodium-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Cobalt phosphide (CoP) nanoparticles which were uniformly embedded in N-doped C nanosheets (CNSs) were fabricated via the simple one-step calcination of a Co-based metal–organic framework (MOF) and red P and exhibited a high capacity, fast kinetics, and a long cycle life. This CoP/CNS composite contained small CoP particles (approximately 11.3 nm) and P–C bonds. When its electrochemical properties were evaluated by testing CoP/Na coin cells, the composite delivered a Na-storage capacity of 598 mAh·g−1 at 0.1 A·g−1 according to the total mass of the composite, which means that the capacity of pure CoP reached 831 mAh·g−1. The composite also exhibited a high rate capability and long-term cyclability (174 mAh·g−1 at 20 A·g−1 and 98.5% capacity retention after 900 cycles at 1 A·g−1), which are commonly attributed to robust P–C bonding and highly conductive CNSs. When the reaction mechanism of the CoP/CNS composite was investigated, a conversion reaction expressed as CoP + 3Na+ + 3e ↔ Co + Na3P was observed. The outstanding Na-storage properties of the CoP/CNS composite may suggest a new strategy for developing high-performance anode materials for Na-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

    Article  Google Scholar 

  2. Xiang, X. D.; Zhang, K.; Chen, J. Recent advances and prospects of cathode materials for sodium-ion batteries. Adv. Mater. 2015, 27, 5343–5364.

    Article  Google Scholar 

  3. Pan, H. L.; Hu, Y.-S.; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360.

    Article  Google Scholar 

  4. Kim, H.; Kim, H.; Ding, Z.; Lee, M. H.; Lim, K.; Yoon, G.; Kang, K. Recent progress in electrode materials for sodiumion batteries. Adv. Energy Mater. 2016, 6, 1600943.

    Article  Google Scholar 

  5. Palomares, V.; Casas-Cabanas, M.; Castillo-Martinez, E.; Han, M. H.; Rojo, T. Update on Na-based battery materials. A growing research path. Energy Environ. Sci. 2013, 6, 2312–2337.

    Article  Google Scholar 

  6. Wang, S. Q.; Xia, L.; Yu, L.; Zhang, L.; Wang, H. H.; Lou, X. W. Free-standing nitrogen-doped carbon nanofiber films: Integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv. Energy Mater. 2016, 6, 1502217.

    Article  Google Scholar 

  7. Tripathi, R.; Wood, S. M.; Islam, M. S.; Nazar, L. F. Na-ion mobility in layered Na2FePO4F and olivine Na[Fe, Mn]PO4. Energy Environ. Sci. 2013, 6, 2257–2264.

    Article  Google Scholar 

  8. Tompsett, D. A.; Islam, M. S. Electrochemistry of hollandite α-MnO2: Li-ion and Na-ion insertion and Li2O incorporation. Chem. Mater. 2013, 25, 2515–2526.

    Article  Google Scholar 

  9. You, Y.; Yu, X. Q.; Yin, Y. X.; Nam, K.-W.; Guo, Y.-G. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Res. 2015, 8, 117–128.

    Article  Google Scholar 

  10. Luo, W.; Shen, F.; Bommier, C.; Zhu, H. L.; Ji, X. L.; Hu, L. B. Na-ion battery anodes: Materials and electrochemistry. Acc. Chem. Res. 2016, 49, 231–240.

    Article  Google Scholar 

  11. Kim, Y.; Ha, K.-H.; Oh, S. M.; Lee, K. T. High-capacity anode materials for sodium-ion batteries. Chem.—Eur. J. 2014, 20, 11980–11992.

    Article  Google Scholar 

  12. Wang, L. J.; Zhang, K.; Hu, Z.; Duan, W. C.; Cheng, F. Y.; Chen, J. Porous CuO nanowires as the anode of rechargeable Na-ion batteries. Nano Res. 2014, 7, 199–208.

    Article  Google Scholar 

  13. Liu, X.; Zhang, K.; Lei, K. X.; Li, F. J.; Tao, Z. L.; Chen, J. Facile synthesis and electrochemical sodium storage of CoS2 micro/nano-structures. Nano Res. 2016, 9, 198–206.

    Article  Google Scholar 

  14. Wang, X.; Kim, H.-M.; Xiao, Y.; Sun, Y.-K. Nanostructured metal phosphide-based materials for electrochemical energy storage. J. Mater. Chem. A 2016, 4, 14915–14931.

    Article  Google Scholar 

  15. Kim, Y.; Park, Y.; Choi, A.; Choi, N.-S.; Kim, J.; Lee, J.; Ryu, J. H.; Oh, S. M.; Lee, K. T. An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries. Adv. Mater. 2013, 25, 3045–3049.

    Article  Google Scholar 

  16. Li, W. J.; Chou, S. L.; Wang, J. Z.; Liu, H. K.; Dou, S. X. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage. Nano Lett. 2013, 13, 5480–5484.

    Article  Google Scholar 

  17. Li, W. H.; Yang, Z. Z.; Li, M. S.; Jiang, Y.; Wei, X.; Zhong, X. W.; Gu, L.; Yu, Y. Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano Lett. 2016, 16, 1546–1553.

    Article  Google Scholar 

  18. Wu, N.; Yao, H.-R.; Yin, Y.-X.; Guo, Y.-G. Improving the electrochemical properties of the red P anode in Na-ion batteries via the space confinement of carbon nanopores. J. Mater. Chem. A 2015, 3, 24221–24225.

    Article  Google Scholar 

  19. Qian, J. F.; Xiong, Y.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries. Nano Lett. 2014, 14, 1865–1869.

    Article  Google Scholar 

  20. Li, W. J.; Chou, S.-L.; Wang, J.-Z.; Kim, J. H.; Liu, H.-K.; Dou, S.-X. Sn4+xP3@ amorphous Sn-P composites as anodes for sodium-ion batteries with low cost, high capacity, long life, and superior rate capability. Adv. Mater. 2014, 26, 4037–4042.

    Article  Google Scholar 

  21. Li, W.-J.; Chou, S.-L.; Wang, J.-Z.; Liu, H.-K.; Dou, S.-X. A new, cheap, and productive FeP anode material for sodium-ion batteries. Chem. Commun. 2015, 51, 3682–3685.

    Article  Google Scholar 

  22. Li, W.-J.; Yang, Q.-R.; Chou, S.-L.; Wang, J.-Z.; Liu, H.-K. Cobalt phosphide as a new anode material for sodium storage. J. Power Sources 2015, 294, 627–632.

    Article  Google Scholar 

  23. Kim, S. O.; Manthiram, A. The facile synthesis and enhanced sodium-storage performance of a chemically bonded CuP2/C hybrid anode. Chem. Commun. 2016, 52, 4337–4340.

    Article  Google Scholar 

  24. Liu, J.; Kopold, P.; Wu, C.; van Aken, P. A.; Maier, J.; Yu, Y. Uniform yolk-shell Sn4P3@C nanospheres as high-capacity and cycle-stable anode materials for sodium-ion batteries. Energy Environ. Sci. 2015, 8, 3531–3538.

    Article  Google Scholar 

  25. Liu, Y. C.; Zhang, N.; Jiao, L. F.; Chen, J. Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries. Adv. Mater. 2015, 27, 6702–6707.

    Article  Google Scholar 

  26. Zhang, N.; Han, X. P.; Liu, Y. C.; Hu, X. F.; Zhao, Q.; Chen, J. 3D porous γ-Fe2O3@C nanocomposite as highperformance anode material of Na-ion batteries. Adv. Energy Mater. 2015, 5, 1401123.

    Article  Google Scholar 

  27. Song, J. X.; Yu, Z. X.; Gordin, M. L.; Hu, S.; Yi, R.; Tang, D. H.; Walter, T.; Regula, M.; Choi, D.; Li, X. L. et al. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. Nano Lett. 2014, 14, 6329–6335.

    Article  Google Scholar 

  28. Song, J. X.; Yu, Z. X.; Gordin, M. L.; Li, X. L.; Peng, H. S.; Wang, D. H. Advanced sodium ion battery anode constructed via chemical bonding between phosphorus, carbon nanotube, and cross-linked polymer binder. ACS Nano 2015, 9, 11933–11941.

    Article  Google Scholar 

  29. Carenco, S.; Portehault, D.; Boissière, C.; Mézailles, N.; Sanchez, C. Nanoscaled metal borides and phosphides: Recent developments and perspectives. Chem. Rev. 2013, 113, 7981–8065.

    Article  Google Scholar 

  30. Li, Y. Q.; Xie, L.; Liu, Y.; Yang, R.; Li, X. G. Favorable hydrogen storage properties of M(HBTC)(4, 4'-bipy)·3DMF (M = Ni and Co). Inorg. Chem. 2008, 47, 10372–10377.

    Article  Google Scholar 

  31. Zhang, K.; Zhao, Q.; Tao, Z. L.; Chen, J. Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Res. 2013, 6, 38–46.

    Article  Google Scholar 

  32. Zhang, K.; Wang, L. J.; Hu, Z.; Cheng, F. Y.; Chen, J. Ultrasmall Li2S nanoparticles anchored in graphene nanosheets for high-energy lithium-ion batteries. Sci. Rep. 2014, 4, 6467.

    Article  Google Scholar 

  33. Baddour-Hadjean, R.; Pereira-Ramos, J. P. Raman microspectrometry applied to the study of electrode materials for lithium batteries. Chem. Rev. 2010, 110, 1278–1319.

    Article  Google Scholar 

  34. Sun, W. Y.; Hu, Z.; Wang, C. Y.; Tao, Z. L.; Chou, S.-L.; Kang, Y.-M.; Liu, H.-K. Effects of carbon content on the electrochemical performances of MoS2–C nanocomposites for Li-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 22168–22174.

    Article  Google Scholar 

  35. Liu, Y. C.; Zhang, N.; Yu, C. M.; Jiao, L. F.; Chen, J. MnFe2O4@C nanofibers as high-performance anode for sodium-ion batteries. Nano Lett. 2016, 16, 3321–3328.

    Article  Google Scholar 

  36. Zhu, Z. Q.; Cheng, F. Y.; Chen, J. Investigation of effects of carbon coating on the electrochemical performance of Li4Ti5O12/C nanocomposites. J. Mater. Chem. A 2013, 1, 9484–9490.

    Article  Google Scholar 

  37. Duan, W. C.; Hu, Z.; Zhang, K.; Cheng, F. Y.; Tao, Z. L.; Chen, J. Li3V2(PO4)3@C core-shell nanocomposite as a superior cathode material for lithium-ion batteries. Nanoscale 2013, 5, 6485–6490.

    Article  Google Scholar 

  38. Li, Q.; Li, Z. Q.; Zhang, Z. W.; Li, C. X.; Ma, J. Y.; Wang, C. X.; Ge, X. L.; Dong, S. H.; Yin, L. W. Low-temperature solution-based phosphorization reaction route to Sn4P3/reduced graphene oxide nanohybrids as anodes for sodium ion batteries. Adv. Energy Mater. 2016, 6, 1600376.

    Article  Google Scholar 

  39. Zhou, L. M.; Zhang, K.; Sheng, J. Z.; An, Q. Y.; Tao, Z. L.; Kang, Y.-M.; Chen, J.; Mai, L. Q. Structural and chemical synergistic effect of CoS nanoparticles and porous carbon nanorods for high-performance sodium storage. Nano Energy 2017, 35, 281–289.

    Article  Google Scholar 

  40. Tang, J.; Yamauchi, Y. Carbon materials: MOF morphologies in control. Nat. Chem. 2016, 8, 638–639.

    Article  Google Scholar 

  41. Salunkhe, R. R.; Kaneti, Y. V.; Kim, J.; Kim, J. H.; Yamauchi, Y. Nanoarchitectures for metal-organic frameworkderived nanoporous carbons toward supercapacitor applications. Acc. Chem. Res. 2016, 49, 2796–2806.

    Article  Google Scholar 

  42. Salunkhe, R. R.; Young, C.; Tang, J.; Takei, T.; Ide, Y.; Kobayashi, N.; Yamauchi, Y. A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte. Chem. Commun. 2016, 52, 4764–4767.

    Article  Google Scholar 

  43. Tang, J.; Wu, S. C.; Wang, T.; Gong, H.; Zhang, H. B.; Alshehri, S. M.; Ahamad, T.; Zhou, H. S.; Yamauchi, Y. Cage-type highly graphitic porous carbon-Co3O4 polyhedron as the cathode of lithium-oxygen batteries. ACS Appl. Mater. Interfaces 2016, 8, 2796–2804.

    Article  Google Scholar 

  44. Song, P.; Bo, X. J.; Nsabimana, A.; Guo, L. P. Additional doping of phosphorus into polypyrrole functionalized nitrogenous carbon nanotubes as novel metal-free oxygen reduction electrocatalyst in alkaline solution. Int. J. Hydrogen Energy 2014, 39, 15464–15473.

    Article  Google Scholar 

  45. Qiao, M.; Tang, C.; He, G.; Qiu, K.; Binions, R.; Parkin, I. P.; Zhang, Q.; Guo, Z.; Titirici, M. M. Graphene/nitrogendoped porous carbon sandwiches for the metal-free oxygen reduction reaction: Conductivity versus active sites. J. Mater. Chem. A 2016, 4, 12658–12666.

    Article  Google Scholar 

  46. Huan, T. N.; Van Khai, T.; Kang, Y.; Shim, K. B.; Chung, H. Enhancement of quaternary nitrogen doping of graphene oxide via chemical reduction prior to thermal annealing and an investigation of its electrochemical properties. J. Mater. Chem. 2012, 22, 14756–14762.

    Article  Google Scholar 

  47. Infantes-Molina, A.; Cecilia, J. A.; Pawelec, B.; Fierro, J. L. G.; Rodríguez-Castellón, E.; Jiménez-López, A. Ni2P and CoP catalysts prepared from phosphite-type precursors for HDS–HDN competitive reactions. Appl. Catal. A: Gen. 2010, 390, 253–263.

    Article  Google Scholar 

  48. Xin, S.; Guo, Y. G.; Wan, L. J. Nanocarbon networks for advanced rechargeable lithium batteries. Acc. Chem. Res. 2012, 45, 1759–1769.

    Article  Google Scholar 

  49. Agubra, V. A.; Zuniga, L.; Flores, D.; Villareal, J.; Alcoutlabi, M. Composite nanofibers as advanced materials for Li-ion, Li-O2 and Li-S batteries. Electrochim. Acta 2016, 192, 529–550.

    Article  Google Scholar 

  50. Shi, S. Q.; Lu, P.; Liu, Z. Y.; Qi, Y.; Hector, L. G.; Li, H.; Harris, S. J. Direct calculation of Li-ion transport in the solid electrolyte interphase. J. Am. Chem. Soc. 2012, 134, 15476–15487.

    Article  Google Scholar 

  51. Zhang, K.; Park, M.; Zhou, L. M.; Lee, G.-H.; Shin, J.; Hu, Z.; Chou, S.-L.; Chen, J.; Kang, Y.-M. Cobalt-doped FeS2 nanospheres with complete solid solubility as a highperformance anode material for sodium-ion batteries. Angew. Chem. 2016, 128, 13014–13018.

    Article  Google Scholar 

  52. Grosvenor, A. P.; Wik, S. D.; Cavell, R. G.; Mar, A. Examination of the bonding in binary transition-metal monophosphides MP (M = Cr, Mn, Fe, Co) by X-ray photoelectron spectroscopy. Inorg. Chem. 2005, 44, 8988–8998.

    Article  Google Scholar 

  53. Guo, G. L.; Guo, Y. Y.; Tan, H. T.; Yu, H.; Chen, W. H.; Fong, E.; Yan, Q. Y. From fibrous elastin proteins to onedimensional transition metal phosphides and their applications. J. Mater. Chem. A 2016, 4, 10893–10899.

    Article  Google Scholar 

  54. Fullenwarth, J.; Darwiche, A.; Soares, A.; Donnadieu, B.; Monconduit, L. NiP3: A promising negative electrode for Li- and Na-ion batteries. J. Mater. Chem. A 2014, 2, 2050–2059.

    Article  Google Scholar 

  55. Zhang, K.; Park, M.; Zhou, L. M.; Lee, G.-H.; Li, W. J.; Kang, Y.-M.; Chen, J. Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv. Funct. Mater. 2016, 26, 6728–6735.

    Article  Google Scholar 

  56. Agyeman, D. A.; Song, K.; Lee, G.-H.; Park, M.; Kang, Y.-M. Carbon-coated Si nanoparticles anchored between reduced graphene oxides as an extremely reversible anode material for high energy-density Li-ion battery. Adv. Energy Mater. 2016, 6, 1600904.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. NRF-2015R1A2A1A15055227, NRF-2017R1A2B3004383), as well as the International Energy Joint R&D Program (No. 20168510011350) and the energy efficiency and resources (No. 20152020105420) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Ministry of Knowledge Economy, Korean government. K. Zhang would like to acknowledge Korea Research Fellowship Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (No. 2016H1D3A1906790).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Mook Kang.

Electronic supplementary material

12274_2017_1649_MOESM1_ESM.pdf

Cobalt phosphide nanoparticles embedded in nitrogen-doped carbon nanosheets: Promising anode material with high rate capability and long cycle life for sodium-ion batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Park, M., Zhang, J. et al. Cobalt phosphide nanoparticles embedded in nitrogen-doped carbon nanosheets: Promising anode material with high rate capability and long cycle life for sodium-ion batteries. Nano Res. 10, 4337–4350 (2017). https://doi.org/10.1007/s12274-017-1649-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1649-5

Keywords

Navigation