Skip to main content

Advertisement

Log in

Room-temperature hydrogen spillover achieving stoichiometric hydrogenation of NO3 and NO2 into N2 over CuPd nanowire network

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

The development of an efficient hydrogen spillover (HS) catalyst achieves the stoichiometric chemoselective hydrogenation of NO3 and NO2 into N2 at room temperature, which is extremely challenging. Herein, we report a CuxPd1−x nanowire network (NWN) (x = 7, 5, or 3) with tunable hydrogen spillover rate of formic acid (FA) with polyvinylpyrrolidine imine (PVPI) modifying its surface. The presence of PVPI boosts the catalytic selectivity and activity of CuPd NWN for FA dehydrogenation and, more importantly, serves as a modem to tune the HS rate of FA and to stoichiometrically hydrogenate NO3 and NO2 to N2 at room temperature. The density functional theory (DFT) reveals that the CuPd (130 h−1) has a weaker HS rate than AgPd (390 h−1), but the CuPd (> 99%) has a higher utilization of HS than AgPd (31%). Our studies demonstrate a new approach of tuning the FA HS rate and maximizing the application for stoichiometric chemoselective hydrogenation reaction, which will be important for hydrogen generation and its applications.

Graphical abstract

摘要

开发一种高效的氢溢出 催化剂, 在室温下实现NO3和NO2化学计量选择性加氢为2是极具挑战性的。在此, 我们报道了一种表面由聚乙烯吡咯烷亚胺 (PVPI) 修饰的CuxPd1−x纳米线网络 (NWN) (x = 7, 5或3), 具有可调节的甲酸 (FA) 氢溢出率。PVPI的存在提高了CuPd NWN对甲酸脱氢的催化选择性和活性, 更重要的是, 它可以作为调节甲酸的氢溢出速率的调制解调器, 在室温下将NO3和NO2以化学计量方式氢化成N2。密度泛函理论 (DFT)表明, CuPd (130 h−1) 的氢溢出速率低于 AgPd (390 h−1), 但 CuPd (>99%) 的氢溢出利用率高于 AgPd (31%) 。我们的研究展示了一种调节甲酸 氢溢出速率并且最大限度地应用于化学计量化学选择加氢反应, 这对氢气的产生及其应用极为重要。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Liu H, Liu X, Yu Y, Yang W, Li J, Feng M, Li H. Bifunctional networked Ag/AgPd core/shell nanowires for the highly efficient dehydrogenation of formic acid and subsequent reduction of nitrate and nitrite in water. J Mater Chem A. 2018;6(11):4611.

    Article  CAS  Google Scholar 

  2. Liu H, Shen M, Zhou P, Guo Z, Liu X, Yang W, Gao M, Chen M, Guan H, Padture N, Yu Y, Guo S, Sun S. Linking melem with conjugated Schiff-base bonds to boost photocatalytic efficiency of carbon nitride for overall water splitting. Nanoscale. 2021;13(20):9315–9321.

    Article  CAS  Google Scholar 

  3. Teng W, Bai N, Liu Y, Liu Y, Fan J, Zhang WX. Selective nitrate reduction to dinitrogen by electrocatalysis on nanoscale iron encapsulated in mesoporous carbon. Environ Sci Technol. 2018;52(1):230.

    Article  CAS  Google Scholar 

  4. Romanelli A, Soto DX, Matiatos I, Martínez DE, Esquius S. A biological and nitrate isotopic assessment framework to understand eutrophication in aquatic ecosystems. Sci Total Environ. 2020;715:136909.

    Article  CAS  Google Scholar 

  5. Knobeloch L, Salna B, Hogan A, Postle J, Anderson H. Blue babies and nitrate-contaminated well water. Environ Health Perspect. 2000;108(7):675.

    Article  CAS  Google Scholar 

  6. Freedman DM, Cantor KP, Ward MH, Helzlsouer KJ. A case-control study of nitrate in drinking water and non-Hodgkin’s lymphoma in Minnesota. Arch Environ Health Int J. 2000;55(5):326.

    Article  CAS  Google Scholar 

  7. Li H, Guo S, Shin K, Wong MS, Henkelman G. Design of a Pd–Au nitrite reduction catalyst by identifying and optimizing active ensembles. ACS Catal. 2019;9(9):7957.

    Article  CAS  Google Scholar 

  8. Troutman JP, Li H, Haddix AM, Kienzle BA, Henkelman G, Humphrey SM, Werth CJ. PdAg alloy nanocatalysts: toward economically viable nitrite reduction in drinking water. ACS Catal. 2020;10(14):7979.

    Article  CAS  Google Scholar 

  9. Li L, Tang C, Yao D, Zheng Y, Qiao SZ. Electrochemical nitrogen reduction: identification and elimination of contamination in electrolyte. ACS Energy Lett. 2019;4(9):2111.

    Article  CAS  Google Scholar 

  10. Jiang M, Zheng X, Chen Y. Enhancement of denitrification performance with reduction of nitrite accumulation and N2O emission by Shewanella oneidensis MR-1 in microbial denitrifying process. Water Res. 2020;169:115242.

    Article  CAS  Google Scholar 

  11. Hou Z, Chen F, Wang J, François-Xavier CP, Wintgens T. Novel Pd/GdCrO3 composite for photo-catalytic reduction of nitrate to N2 with high selectivity and activity. Appl Catal B. 2018;232:124.

    Article  CAS  Google Scholar 

  12. Aristizábal A, Contreras S, Barrabés N, Llorca J, Tichit D, Medina F. Catalytic reduction of nitrates in water on Pt promoted Cu hydrotalcite-derived catalysts: effect of the Pt-Cu alloy formation. Appl Catal B. 2011;110:58.

    Article  Google Scholar 

  13. Mellor RB, Ronnenberg J, Campbell WH, Diekmann S. Reduction of nitrate and nitrite in water by immobilized enzymes. Nature. 1992;355(6362):717.

    Article  CAS  Google Scholar 

  14. Jiang L, Liu K, Hung SF, Zhou L, Qin R, Zhang Q, Zheng N. Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts. Nat Nanotechnol. 2020;15(10):848.

    Article  CAS  Google Scholar 

  15. Zhang YH, Gong PF, Li LW, Sun H, Feng DC, Guo SH. Hydrogen storage thermodynamics and dynamics of La–Mg–Ni-based LaMg12-type alloys synthesized by mechanical milling. Rare Met. 2019;38(12):1144.

    Article  CAS  Google Scholar 

  16. Karim W, Spreafico C, Kleibert A, Gobrecht J, VandeVondele J, Ekinci Y, van Bokhoven JA. Catalyst support effects on hydrogen spillover. Nature. 2017;541(7635):68.

    Article  CAS  Google Scholar 

  17. Zhou H, Wang XH, Liu HZ, Gao SC, Yan M. Improved hydrogen storage properties of LiBH4 confined with activated charcoal by ball milling. Rare Met. 2019;38(4):321.

    Article  CAS  Google Scholar 

  18. Xiong M, Gao Z, Zhao P, Wang G, Yan W, Xing S, Qin Y. In situ tuning of electronic structure of catalysts using controllable hydrogen spillover for enhanced selectivity. Nat Commun. 2020;11(1):1.

    Article  Google Scholar 

  19. Li Y, Yang Y, Huang JW, Wang L, She HD, Zhong JB, Wang QZ. Preparation of CuS/BiVO4 thin film and its efficaciously photoelectrochemical performance in hydrogen generation. Rare Met. 2019;38(5):428.

    Article  CAS  Google Scholar 

  20. Wang HH, Zhang JF, Chen ZL, Zhang MM, Han XP, Zhong C, Deng YD, Hu WB. Polycrystal Pd nanoparticles: green synthesis and size-dependent performance for formic acid oxidation. Rare Met. 2019;38(2):115.

    Article  CAS  Google Scholar 

  21. Ma Z, Yue M, Liu H, Yin Z, Wei K, Guan H, Lin H, Shen M, An S, Wu Q, Sun S. Stabilizing hard magnetic SmCo5 nanoparticles by N-doped graphitic carbon layer. J Am Chem Soc. 2020;142(18):8440.

    Article  CAS  Google Scholar 

  22. Wang H, Zhang J, Chen Z, Zhang M, Han P, Zhong C, Deng Y, Hu W. Size-controllable synthesis and high-performance formic acid oxidation of polycrystalline Pd nanoparticles. Rare Met. 2019;38(2):115.

    Article  CAS  Google Scholar 

  23. Liu H, Liu X, Yang W, Shen M, Geng S, Yu C, Yu Y. Photocatalytic dehydrogenation of formic acid promoted by a superior PdAg@gC3N4 Mott-Schottky heterojunction. J Mater Chem A. 2019;7(5):2022.

    Article  CAS  Google Scholar 

  24. Liu H, Huang B, Zhou J, Wang K, Yu Y, Yang W, Guo S. Enhanced electron transfer and light absorption on imino polymer capped PdAg nanowire networks for efficient room-temperature dehydrogenation of formic acid. J Mater Chem A. 2018;6(5):1979.

    Article  CAS  Google Scholar 

  25. Liu H, Li XX, Liu XY, Ma ZH, Yin ZY, Yang WW, Yu YS. Schiff-base-rich gCxN4 supported PdAg nanowires as an efficient Mott-Schottky catalyst boosting photocatalytic dehydrogenation of formic acid. Rare Met. 2021;40(4):808.

    Article  CAS  Google Scholar 

  26. Liu H, Guo Y, Yu Y, Yang W, Shen M, Liu X, Geng S, Li J, Yu C, Yin Z, Li H. Surface Pd-rich PdAg nanowires as highly efficient catalysts for dehydrogenation of formic acid and subsequent hydrogenation of adiponitrile. J Mater Chem A. 2018;6(36):17323.

    Article  CAS  Google Scholar 

  27. Metin Ö, Sun X, Sun S. Monodisperse gold–palladium alloy nanoparticles and their composition-controlled catalysis in formic acid dehydrogenation under mild conditions. Nanoscale. 2013;5(3):910.

    Article  CAS  Google Scholar 

  28. Brosnahan JT, Zhang Z, Yin Z, Zhang S. Electrocatalytic reduction of furfural with high selectivity to furfuryl alcohol using AgPd alloy nanoparticles. Nanoscal. 2021;13(4):2312.

    Article  CAS  Google Scholar 

  29. Cui M, Johnson G, Zhang Z, Li S, Hwang S, Zhang X, Zhang S. AgPd nanoparticles for electrocatalytic CO2 reduction: bimetallic composition-dependent ligand and ensemble effects. Nanoscale. 2020;12(26):14068.

    Article  CAS  Google Scholar 

  30. Peng Y, Cui M, Zhang Z, Shu S, Shi X, Brosnahan JT, Liu C, Zhang Y, Godbold P, Zhang X, Dong F, Jiang G, Zhang S. Bimetallic composition-promoted electrocatalytic hydrodechlorination reaction on silver–palladium alloy nanoparticles. ACS Catal. 2019;9(12):10803.

    Article  CAS  Google Scholar 

  31. Zhang S, Metin Ö, Su D, Sun S. Monodisperse AgPd alloy nanoparticles and their superior catalysis for the dehydrogenation of formic acid. Angew Chem Int Ed. 2013;52(13):3681.

    Article  CAS  Google Scholar 

  32. Yu C, Guo X, Xi Z, Muzzio M, Yin Z, Shen B, Li J, Seto CT, Sun S. AgPd nanoparticles deposited on WO2.72 nanorods as an efficient catalyst for one-pot conversion of nitrophenol/nitroacetophenone into benzoxazole/quinazoline. J Am Chem Soc. 2017;139(16):5712.

    Article  CAS  Google Scholar 

  33. Yamauchi M, Abe R, Tsukuda T, Kato K, Takata M. Highly selective ammonia synthesis from nitrate with photocatalytically generated hydrogen on CuPd/TiO2. J Am Chem Soc. 2011;133(5):1150.

    Article  CAS  Google Scholar 

  34. Xu Y, Ren K, Ren T, Wang M, Liu M, Wang Z, Li X, Wang L, Wang H. Cooperativity of Cu and Pd active sites in CuPd aerogels enhances nitrate electroreduction to ammonia. Chem Commun. 2021;57(61):7525.

    Article  CAS  Google Scholar 

  35. Ma Z, Liu H, Yue M. Magnetically recyclable Sm2Co17/Cu catalyst to chemoselectively reduce the 3-nitrostyrene into 3-vinylaniline under room temperature. Nano Res. 2019;12(12):3085.

  36. Bletery Q, Thomas AM, Rempel AW, Karlstrom L, Sladen A, De Barros L. Mega-earthquakes rupture flat megathrusts. Science. 2016;354(6315):1027.

    Article  CAS  Google Scholar 

  37. Wang L, Li Z, Wang K, Dai Q, Lei C, Yang B, Zhang Q, Lei L, Leung MKH, Hou Y. Tuning d-band center of tungsten carbide via Mo doping for efficient hydrogen evolution and Zn–H2O cell over a wide pH range. Nano Energy. 2020;74:104850.

    Article  CAS  Google Scholar 

  38. Bletery Q, Thomas AM, Rempel AW, Karlstrom L, Anthony S, Barros LD. Mega-earthquakes rupture flat megathrusts. Science. 2016;354(6315):1027.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Shaanxi Science Foundation (No. 2021JM-356), the Start-Up Funding for Class D Talent of Xi’an University of Architecture and Technology (No.1608720038), the National Natural Science Foundation of China (Nos. 21871221 and 21602175), the Special Scientific Research Project of Shaanxi Provincial Department of Education (No. 2013JK0874) and the Key Research and Development Program in Shaanxi Province (No. 2019SF-241).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hu Liu or Zhen-Hui Ma.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 13289 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, RY., Li, XX., Lei, Q. et al. Room-temperature hydrogen spillover achieving stoichiometric hydrogenation of NO3 and NO2 into N2 over CuPd nanowire network. Rare Met. 41, 851–858 (2022). https://doi.org/10.1007/s12598-021-01854-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01854-6

Navigation