Skip to main content
Log in

Study on antibacterial mechanism of copper-bearing austenitic antibacterial stainless steel by atomic force microscopy

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A study was made on the antibacterial mechanism of copper-bearing austenitic antibacterial stainless steel by a series of methods such as atomic force microscopy (AFM) observation, force–distance curves and inductively coupled plasma mass spectrometer test. It was observed by AFM that the structure of the outer cell membrane responsible for the cell permeability was substantially changed for the bacteria after contacting with the antibacterial stainless steel, showing that cell walls were seriously damaged and a lot of contents in the cells leaked. It was also found that the adhesion force of bacteria to antibacterial stainless steel was considerably greater than that to the contrast steel, indicating that the electrostatic forces by Cu2+ being an important factor for killing bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. L. Chen, W.G. Coleman Jr., J. Bacteriol. 175(9), 2534–2540 (1993)

    CAS  Google Scholar 

  2. M.T. Silva, J.C.D.F. Sousa, J. Bacteriol. 113(2), 953–962 (1973)

    CAS  Google Scholar 

  3. C.R.H. Raetz, Anuu. Rev. Biochem. 59, 129–170 (1990)

    Article  CAS  Google Scholar 

  4. X. Yao, M.H. Jericho, D.F. Pink, T.J. Beveridfge, J. Bacteriol. 181, 6865 (1999)

    CAS  Google Scholar 

  5. X. Yao, J. Walter, S. Burke, S. Stewart, M.H. Jericho, D. Pink, R. Hunter, T.J. Beveridge, Colloids Surf. B Biointerfaces 23, 213 (2002)

    Article  CAS  Google Scholar 

  6. N.A. Amro, L.P. Kotra, K. Wadu-Mesthrige, A. Bulychev, S. Mobashery, G.Y. Liu, Langmuir 16, 2789 (2000)

    Article  CAS  Google Scholar 

  7. P. Schaer-Zammaretti, J. Ubbink, Ultramicroscopy 97, 199 (2003)

    Article  CAS  Google Scholar 

  8. Y.F. Dufrene, Ch.J.P. Boonaert, H.C. van der Mei, H.J. Busscher, P.G. Rouxhet, Ultramicroscopy 86, 113 (2001)

    Article  CAS  Google Scholar 

  9. V. Vadillo-Rodriguez, H.J. Busscher, W. Norde, J. de Vries, H.C. van der Mei, Langmuir 19, 2372 (2003)

    Article  CAS  Google Scholar 

  10. C.C. Trapalis, M. Kokkoris, G. Perdikakis, G. Kordas, J. Sol-Gel Sci. Technol. 26, 1213–1218 (2003)

    Article  CAS  Google Scholar 

  11. Z.G. Dan, H.W. Ni, B.F. Xu, J. Xiong, P.Y. Xiong, Thin Solid Films 492, 93–100 (2005)

    Article  CAS  Google Scholar 

  12. L. Nan, W. Yang, Y. Liu, H. Xu, Y. Li, M. Lu, K. Yang, J. Mater. Sci. Tecnol. 24, 197–201 (2008)

    Google Scholar 

  13. Y.F. Dufrêne, Curr. Opin. Microbiol. 6, 317–323 (2003)

    Article  Google Scholar 

  14. Y. Ong, A. Razatos, G. Georgious, M.M. Sharma, Langmuir 15, 2719–2725 (1999)

    Article  CAS  Google Scholar 

  15. M. Fletcher, in Bacterial Adhesion: Molecular and Ecological Diversity, ed. by M. Fletcher (Wiley–Liss, New York, 1996), pp. 1–24

  16. A. Razatos, Y. Ong, M.M. Sharma, G. Georgious, Proc. Natl. Acad. Sci.USA 95, 11059–11064 (1998)

    Article  CAS  Google Scholar 

  17. J.T. Gannon, V.B. Manilal, M. Alexander, Appl. Environ. Microbiol. 57, 190–193 (1991)

    Google Scholar 

  18. H.J. Busscher, A.H. Weerkamp, H.C. van der Mei, A.W.J. van Pelt, H.P. De Jong, J. Arends, Appl. Environ. Microbiol. 48, 980–983 (1984)

    CAS  Google Scholar 

  19. M. Radmacher, M. Fritz, H.G. Hansma, P.K. Hansma, Science 265, 1577–1579 (1994)

    Article  CAS  Google Scholar 

  20. P. Roth, E. Werner, I. Wender, P. Schramel, Appl. Radiat. Isot. 47, 1055–1056 (1996)

    Article  CAS  Google Scholar 

  21. M. Barbaro, B. Passariello, S. Quaresima, A. Cascillo, A. Marabini, Microchem. J. 51, 312–318 (1995)

    Article  CAS  Google Scholar 

  22. C.J. van Oss, R.J. Good, M.K. Chaudhury, J. Colloid. Interface Sci. 111, 378–390 (1986)

    Article  Google Scholar 

  23. C. Rotsch, M. Radmacher, Langmuir 13, 2825–2832 (1997)

    Article  CAS  Google Scholar 

  24. W.C. Yang, Master Dissertation, Chinese Academy of Sciences, vol 7, (2007), p. 51 (in Chinese)

  25. L. Peng, L. Yi, L. Zhexue, Z. Juncheng, D. Jiaxin, P. Daiwen, S. Ping, Q. Songsheng, J. Inorganic. Biochem. 98, 68–72 (2004)

    Article  Google Scholar 

Download references

Acknowledgement

This work was financially supported by a fund from National Natural Science Foundation (No. 50671101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nan, L., Liu, Y., Lü, M. et al. Study on antibacterial mechanism of copper-bearing austenitic antibacterial stainless steel by atomic force microscopy. J Mater Sci: Mater Med 19, 3057–3062 (2008). https://doi.org/10.1007/s10856-008-3444-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3444-z

Keywords

Navigation