Skip to main content
Log in

Graphene-encapsulated blackberry-like porous silicon nanospheres prepared by modest magnesiothermic reduction for high-performance lithium-ion battery anode

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Porous silicon (Si) nanostructures have aroused much interest as lithium-ion battery anodes because of the large space to accommodate the volume change in lithiation and delithiation and shorter ion transfer distance. However, fabrication of porous structures tends to be difficult to control and complex, so, the final electrochemical performance can be compromised. Herein, a modest magnesiothermic reduction (MMR) reaction is demonstrated to produce blackberry-like porous Si nanospheres (PSSs) controllably using magnesium silicide (Mg2Si) as Mg source and SiO2 nanospheres as the reactant. This improved MR method provides good control of the kinetics and heat release compared to the traditional MR (TMR) method using Mg powder as the reactant. The PSSs obtained by MMR reaction has higher structural integrity than that fabricated by TMR. After encapsulation with reduced graphene oxide, the Si/C composite exhibits superior cycling stability and rates such as a high reversible capacity of 1034 mAh·g−1 at 0.5C (4200 mAh·g−1 at 1.0C) after 1000 cycles, capacity retention of 79.5%, and high rate capacity of 497 mAh·g−1 at 2.0C. This strategy offers a new route to fabricate high-performance porous Si anodes and can be extended to other materials such as germanium.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. An WL, Gao B, Mei SX, Xiang B, Fu JJ, Wang L, Zhang QB, Chu PK, Huo KF. Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat Commun. 2019;10(1):1.

    Google Scholar 

  2. Chen D, Tan HT, Rui XH, Zhang Q, Feng YZ, Geng HB, Li CC, Huang SM, Yu Y. Oxyvanite V3O5: a new intercalation-type anode for lithium-ion battery. InfoMat. 2019;1(2):251.

    Google Scholar 

  3. Ji YR, Weng ST, Li XY, Zhang QH, Gu L. Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review. Rare Met. 2020;39(3):205.

    CAS  Google Scholar 

  4. Wu SJ, Wu ZH, Fang S, Qi XP, Yu B, Yang JY. A comparison of core–shell Si/C and embedded structure Si/C composites as negative materials for lithium-ion batteries. Rare Met. 2019. https://doi.org/10.1007/s12598-019-01354-8.

    Article  Google Scholar 

  5. Wang JT, Lu SG, Wang Y, Huang B, Yang JY, Tan A. Improvement of cycle behavior of Si/Sn anode composite supported by stable Si–O–C skeleton. Rare Met. 2014. https://doi.org/10.1007/s12598-014-0377-1.

    Article  Google Scholar 

  6. Weng W, Yang JR, Zhou J, Gu D, Xiao W. Template–free electrochemical formation of silicon nanotubes from silica. Adv Sci. 2020. https://doi.org/10.1002/advs.202001492.

    Article  Google Scholar 

  7. Zheng ZM, Li P, Huang J, Liu HD, Zao Y, Hu ZL, Zhang L, Chen HX, Wang MS, Peng DL, Zhang QB. High performance columnar-like Fe2O3@carbon composite anode via yolk@shell structural design. J Energy Chem. 2020;41:126.

    Google Scholar 

  8. Zhao LZ, Wu HH, Yang CH, Zhang QB, Zhong GM, Zheng ZM, Chen HX, Wang JM, He K, Wang BL, Zhu T, Zeng XC, Liu ML, Wang MS. Mechanistic origin of the high performance of yolk@shell Bi2S3@N-doped carbon nanowire electrode. ACS Nano. 2018;12(12):12597.

    CAS  Google Scholar 

  9. Wang BP, Lv R, Lan DS. Preparation and electrochemical properties of Sn/C composites. Rare Met. 2019;38(10):996.

    CAS  Google Scholar 

  10. An YB, Chen S, Zou MM, Geng LB, Sun XZ, Zhang X, Wang K, Ma YW. Improving anode performances of lithium-ion capacitors employing Carbon–Si composites. Rare Met. 2019;38(12):1113.

    CAS  Google Scholar 

  11. Weng W, Zeng C, Xiao W. In situ pyrolysis concerted formation of Si/C hybrids during molten salt electrolysis of SiO2@polydopamine. ACS Appl Mater Interfaces. 2019;11(9):9156.

    CAS  Google Scholar 

  12. Li J, Yang JY, Wang JT, Lu SG. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met. 2019;38(3):199.

    CAS  Google Scholar 

  13. Wu MG, Liao JQ, Yu LX, Lv RT, Li P, Sun WP, Tan R, Duan XC, Zhang L, Li F, Kim JY, Shin KH, Park HS, Zhang WC, Guo ZP, Wang HT, Tang YB, Gorgolis G, Galiotis C, Ma JM. 2020 Roadmap on carbon materials in energy storage and conversion. Chem Asian J. 2020;15(7):995.

    CAS  Google Scholar 

  14. Zhang QB, Chen HX, Luo LL, Zhao BT, Luo H, Xiang H, Wang JW, Wang CM, Yang Y, Zhu T, Liu ML. Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance of lithium-ion batteries. Energy Environ Sci. 2018;11(3):669.

    CAS  Google Scholar 

  15. Wu ZH, Yang JY, Shi BM, Zhao CR, Yu ZL. Self-healing alginate-carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 2019;38(9):832.

    CAS  Google Scholar 

  16. Lin N, Zhou JB, Zhu YC, Qian YT. Embedding silicon nanoparticles in graphene based 3D framework by cross-link reaction for high performance lithium ion batteries. J Mater Chem A. 2014;2(46):19604.

    CAS  Google Scholar 

  17. Ashuri M, He QR, Zhang K, Emani S, Shaw LL. Synthesis of hollow silicon nanospheres encapsulated with a carbon shell through sol–gel coating of polystyrene nanoparticles. J Sol–Gel Sci Technol. 2017;82(1):201.

    CAS  Google Scholar 

  18. Kohandehghan A, Kalisvaart P, Cui K, Kupsta M, Memarzadeh E, Mitlin D. Silicon nanowire lithium-ion battery anodes with ALD deposited TiN coatings demonstrate a major improvement in cycling performance. J Mater Chem A. 2013;1(41):12850.

    CAS  Google Scholar 

  19. Sohn M, Kim DS, Park HI, Kim JH, Kim H. Porous silicon–carbon composite materials engineered by simultaneous alkaline etching for high-capacity lithium storage anodes. Electrochim Acta. 2016;196:197.

    CAS  Google Scholar 

  20. Wada T, Yamada J, Kato H. Preparation of three-dimensional nanoporous Si using dealloying by metallic melt and application as a lithium-ion rechargeable battery negative electrode. J Power Sources. 2016;306:8.

    CAS  Google Scholar 

  21. Zhu XY, Chen H, Wang Y, Xia L, Tan QQ, Li H, Zhong ZY, Su FB, Zhao XS. Growth of silicon/carbon microrods on graphite microspheres as improved anodes for lithium-ion batteries. J Mater Chem A. 2013;1(14):4483.

    CAS  Google Scholar 

  22. Yi Y, Lee GH, Kim JC, Shim HW, Kim DW. Tailored silicon hollow spheres with micrococcus for Li ion battery electrodes. Chem Eng J. 2017;327:297.

    CAS  Google Scholar 

  23. Ge MY, Lu YH, Ercius P, Rong JP, Fang X, Mecklenvurg M, Zhou CW. Large-scale fabrication, 3D tomography, and lithium-ion battery application of porous silicon. Nano Lett. 2014;14(1):261.

    CAS  Google Scholar 

  24. Chatterjee S, Carter R, Oakes L, Erwin WR, Bardhan R, Pint CL. Electrochemical and corrosion stability of nanostructured silicon by graphene coatings: toward high power porous silicon supercapacitors. J Phys Chem C. 2014;118(20):10893.

    CAS  Google Scholar 

  25. Huang T, Sun DY, Yang WX, Wu Q, Xiao RS. The fabrication of porous Si with interconnected micro-sized dendrites and tunable morphology through the dealloying of a laser remelted Al–Si alloy. Materials. 2017;10(4):375.

    Google Scholar 

  26. Entwistle J, Rennie A, Patwardhan S. A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond. J Mater Chem A. 2018;6(38):18344.

    CAS  Google Scholar 

  27. Favors Z, Bay HH, Mutlu Z, Ahmed K, Lonescu R, Ye R, Ozkan M, Ozkan CS. Towards scalable binderless electrodes carbon coated silicon nanofiber paper via Mg reduction of electrospun SiO2 nanofibers. Sci Rep. 2015;5:8246.

    CAS  Google Scholar 

  28. Bao ZH, Weatherspoon MR, Shian S, Cai Y, Graham PD, Allan SM, Ahmad G, Dickerson MB, Church BC, Kang ZT, Abernathy HW III, Summers CJ, Liu ML, Sandhage KH. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature. 2007;446(7132):172.

    CAS  Google Scholar 

  29. Jia HP, Gao PF, Yang J, Wang JL, Nuli Y, Yang Z. Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material. Adv Energy Mater. 2011;1(6):1036.

    CAS  Google Scholar 

  30. Ren YP, Zhou XY, Zhou HC, Yang J, Chen S, Wu LL, Nie Y, Wang B. Zn-assisted magnesiothermic reduction for the preparation of ultra-fine silicon nanocrystals for lithium ion batteries. Chem Eng J. 2017;328:691.

    CAS  Google Scholar 

  31. Zhu GJ, Luo W, Wang LJ, Jiang W, Yang JP. Silicon: toward eco-friendly reduction techniques for lithium-ion battery applications. J Mater Chem A. 2019;7(43):24715.

    CAS  Google Scholar 

  32. Luo W, Wang XF, Meyers C, Wannenmacher N, Sirisaksoontorn W, Lerner MM, Ji XL. Efficient fabrication of nanoporous Si and Si/Ge enabled by a heat scavenger in magnesiothermic reactions. Sci Rep. 2013;3:2222.

    Google Scholar 

  33. Mu TS, Shen BC, Lou SF, Zhang ZG, Ren Y, Zhou XM, Zou PJ, Du CY, Ma YL, Huo H, Yin GP. Scalable mesoporous silicon microparticles composed of interconnected nanoplates for superior lithium storage. Chem Eng J. 2019;375:121923.

    CAS  Google Scholar 

  34. Zhang AP, Fang ZW, Tang YW, Zhou YM, Wu P, Yu GH. Inorganic gel-derived metallic frameworks enabling high-performance silicon anodes. Nano Lett. 2019;19(9):6292.

    CAS  Google Scholar 

  35. Tian RY, Park SH, King PJ, Cunningham G, Coelho J, Nicolosi V, Coleman JN. Quantifying the factors limiting rate performance in battery electrodes. Nat Commun. 2019;10(1):1.

    Google Scholar 

  36. Xu BL, Qi SH, Jin MM, Cai XY, Lai LF, Sun ZT, Han XG, Lin ZF, Shao H, Peng P, Xiang ZH, Elshof JET, Liu C, Zhang ZX, Duan XC, Ma JM. 2020 roadmap on two-dimensional materials for energy storage and conversion. Chin Chem Lett. 2019;30(12):2053.

    CAS  Google Scholar 

  37. Ren J, Zhang WJ, Wang YB, Wang YX, Zhou J, Dai LM, Xu M. A graphene rheostat for highly durable and stretchable strain sensor. InfoMat. 2019;1(3):396.

    CAS  Google Scholar 

  38. Wu JX, Qin XY, Zhang HR, He YB, Li BH, Ke L, Lv W, Du HD, Yang QH, Kang FY. Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode. Carbon. 2015;84:434.

    CAS  Google Scholar 

  39. Fang R, Xiao W, Miao C, Mei P, Yan XM, Zhang Y, Jiang Y. Improved lithium storage performance of pomegranate-like Si@NC/rGO composite anodes by facile in situ nitrogen doped carbon coating and freeze drying processes. J Alloys Compd. 2020;834:155230.

    CAS  Google Scholar 

  40. Wu P, Wang H, Tang YW, Zhou YM, Lu TH. Three-dimensional interconnected network of graphene-wrapped porous silicon spheres: in situ magnesiothermic-reduction synthesis and enhanced lithium-storage capabilities. ACS Appl Mater Interfaces. 2014;6(5):3546.

    CAS  Google Scholar 

  41. An WL, Fu JJ, Su JJ, Wang L, Peng X, Wu K, Chen QY, Bi YJ, Gao B, Zhang XM. Mesoporous hollow nanospheres consisting of carbon coated silica nanoparticles for robust lithium-ion battery anodes. J Power Sources. 2017;345:227.

    CAS  Google Scholar 

  42. Becerril HA, Mao J, Liu ZF, Stoltenberg RM, Bao ZN, Chen YS. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano. 2008;2(3):463.

    CAS  Google Scholar 

  43. Wang J, Meng XC, Fan XL, Zhang WB, Zhang HY, Wang CS. Scalable synthesis of defect abundant Si nanorods for high-performance Li-ion battery anodes. ACS Nano. 2015;9(6):6576.

    CAS  Google Scholar 

  44. Son IH, Park JH, Kwon S, Park S, Rümmeli MH, Bachmatiuk A, Song HJ, Ku J, Choi JW, Choi JM. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nat Commun. 2015;6:7393.

    CAS  Google Scholar 

  45. Gauthier M, Mazouzi D, Reyter D, Lestriez B, Moreau P, Guyomard D, Roué L. A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries. Energy Environ Sci. 2013;6(7):2145.

    CAS  Google Scholar 

  46. Philippe B, Dedryvère R, Allouche J, Lindgren F, Gorgoi M, Rensmo H, Gonbeau D, Edström K. Nanosilicon electrodes for lithium-ion batteries: interfacial mechanisms studied by hard and soft X-ray photoelectron spectroscopy. Chem Mater. 2012;24(6):1107.

    CAS  Google Scholar 

  47. Tang H, Tu JP, Liu XY, Zhang YJ, Huang S, Li WZ, Wang XL, Gu CD. Self-assembly of Si/honeycomb reduced graphene oxide composite film as a binder-free and flexible anode for Li-ion batteries. J Mater Chem A. 2014;2(16):5834.

    CAS  Google Scholar 

  48. Wen ZH, Lu GH, Cui SM, Kim H, Ci SQ, Jiang JW, Hurley PT, Chen JH. Rational design of carbon network cross-linked Si–SiC hollow nanosphere as anode of lithium-ion batteries. Nanoscale. 2014;6(1):342.

    CAS  Google Scholar 

  49. Wang ZL, Mao ZM, Lai LF, Okubo M, Song YH, Zhou YJ, Liu X, Huang W. Sub-micron silicon/pyrolyzed carbon@natural graphite self-assembly composite anode material for lithium-ion batteries. Chem Eng J. 2017;313:187.

    CAS  Google Scholar 

  50. Tang H, Zhang J, Zhang YJ, Xiong QQ, Tong YY, Li Y, Wang XL, Gu CD, Tu J. Porous reduced graphene oxide sheet wrapped silicon composite fabricated by steam etching for lithium-ion battery application. J Power Sources. 2015;286:431.

    CAS  Google Scholar 

  51. Zhong LL, Guo JC, Mangolini L. A stable silicon anode based on the uniform dispersion of quantum dots in a polymer matrix. J Power Sources. 2015;273:638.

    CAS  Google Scholar 

  52. Li B, Yang SB, Li SM, Wang B, Liu JH. From commercial sponge toward 3D graphene–silicon networks for superior lithium storage. Adv Energy Mater. 2015;5(15):1500289.

    Google Scholar 

  53. Favors Z, Wang W, Bay HH, Mutlu Z, Ahmed K, Liu C, Ozkan M, Ozkan CS. Scalable synthesis of nano-silicon from beach sand for long cycle life Li-ion batteries. Sci Rep. 2014;4:5623.

    CAS  Google Scholar 

  54. Cubuk ED, Kaxiras E. Theory of structural transformation in lithiated amorphous silicon. Nano Lett. 2014;14(7):4065.

    CAS  Google Scholar 

  55. Jiao LS, Liu JY, Li HY, Wu TS, Li F, Wang HY, Niu L. Facile synthesis of reduced graphene oxide-porous silicon composite as superior anode material for lithium-ion battery anodes. J Power Sources. 2016;315:9.

    CAS  Google Scholar 

  56. Lin HY, Li CH, Wang DY, Chen CC. Chemical doping of a core-shell silicon nanoparticles@polyaniline nanocomposite for the performance enhancement of a lithium ion battery anode. Nanoscale. 2016;8(3):1280.

    CAS  Google Scholar 

  57. Chen BH, Chuang SI, Liu WR, Duh JG. A revival of waste: atmospheric pressure nitrogen plasma jet enhanced jumbo silicon/silicon carbide composite in lithium ion batteries. ACS Appl Mater Interfaces. 2015;7(51):28166.

    CAS  Google Scholar 

  58. Mi HW, Li F, He CX, Chai XY, Zhang QL, Li CH, Li YL, Liu JH. Three-dimensional network structure of silicon–graphene–polyaniline composites as high performance anodes for Lithium-ion batteries. Electrochim Acta. 2016;190:1032.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51974208 and 51504171), the Major Project of Technology Innovation of Hubei Province (No. 2018AAA011), the Special Project of Central Government for Local Science and Technology Development of Hubei Province (No. 2019ZYYD024), the Innovation Group of Natural Science Foundation of Hubei Province (No. 2019CFA020), Wuhan Yellow Crane Talents Program, City University of Hong Kong Applied Research Grant (ARG) (No. 9667122) and Hong Kong Research Grants Council (RGC) General Research Funds (GRF) (No. City U 11205617).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Biao Gao or Paul K. Chu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3301 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, B., An, WL., Fu, JJ. et al. Graphene-encapsulated blackberry-like porous silicon nanospheres prepared by modest magnesiothermic reduction for high-performance lithium-ion battery anode. Rare Met. 40, 383–392 (2021). https://doi.org/10.1007/s12598-020-01528-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01528-9

Keywords

Navigation