Skip to main content
Log in

Ultra-high-energy lithium-ion batteries enabled by aligned structured thick electrode design

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

摘要

电池制造有希望制备出具有可精细调控微观结构, 几何形状和厚度的高性能电极。然而, 厚电极面临着电子和锂离子传输缓慢的挑战。在这里, 我们制备出–种具有导向结构的厚电极, 作为实现高能锂离子电池的替代方法。开发了借助胶粘剂和单壁碳纳米管 (SWCNT) 的冷冻干燥工艺, 用于制备基于LiNi0.8Co0.1Mn0.1O2 (NCM811) 作为代表性正极电极材料的导向结构厚电极。1 mm厚的NCM811正极具有101 mg·cm−2的面载量, 可实现203.4 mAh·g-1的高比容量。此外, 已成功证明了所制备的超厚电极具有538 mg·cm-2的高面载量和99.5 wt%的高活性物质含量, 实现了93.4 mAh·cm−2极高面积容量, 与商用电极相比提高了30倍以上。该设计为能源存储设备和其他相关实际应用的环保, 可扩展和可持续的制造过程开辟了一条有效的途径。

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Liu Y, Zhu Y, Cui Y. Challenges and opportunities towards fast-charging battery materials. Nat Energy. 2019;4(7):540.

    Article  Google Scholar 

  2. Billaud J, Bouville F, Magrini T, Villevieille C, Studart AR. Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. Nat Energy. 2016;1(8):1.

    Article  Google Scholar 

  3. Yang S, He R, Zhang Z, Cao Y, Gao X, Liu X. Chain: cyber hierarchy and interactional network enabling digital solution for battery full-lifespan management. Matter. 2020;3(1):27.

    Article  Google Scholar 

  4. Yang R, Zhang XJ, Fan TF, Jiang DP, Wang Q. Improved electrochemical performance of ternary Sn–Sb–Cu nanospheres as anode materials for lithium-ion batteries. Rare Met. 2020;39(10):1159.

    Article  Google Scholar 

  5. Jaiser S, Müller M, Baunach M, Bauer W, Scharfer P, Schabel W. Investigation of film solidification and binder migration during drying of Li-ion battery anodes. J Power Sources. 2016;318(30):210.

    Article  CAS  Google Scholar 

  6. Baunach M, Jaiser S, Schmelzle S, Nirschl H, Scharfer P, Schabel W. Delamination behavior of lithium-ion battery anodes: influence of drying temperature during electrode processing. Dry Technol. 2016;34(4):462.

    Article  CAS  Google Scholar 

  7. Liu J, Galpaya DGD, Yan L, Sun M, Lin Z, Yan C, Liang C, Zhang S. Exploiting a robust biopolymer network binder for an ultrahigh-areal-capacity Li-S battery. Energy Environ Sci. 2017;10(3):750.

    Article  CAS  Google Scholar 

  8. Wang H, Zheng P, Yi H, Wang Y, Yang Z, Lei Z, Chen Y, Deng Y, Wang C, Yang Y. Low-cost and environmentally friendly biopolymer binders for Li-S batteries. Macromolecules. 2020;53(19):8539.

    Article  CAS  Google Scholar 

  9. Kuang Y, Chen C, Kirsch D, Hu L. Thick electrode batteries: principles, opportunities, and challenges. Adv Energy Mater. 2019;9(33):1901457.

    Article  Google Scholar 

  10. Shi B, Shang Y, Pei Y, Pei S, Wang L, Heider D, Zhao YY, Zheng C, Yang B, Yarlagadda S, Chou TW, Fu KK. Low Tortuous, highly conductive, and high-areal-capacity battery electrodes enabled by through-thickness aligned carbon fiber framework. Nano Lett. 2020;20(7):5504.

    Article  CAS  Google Scholar 

  11. Kim JM, Park CH, Wu Q, Lee SY. 1D building blocks-intermingled heteronanomats as a platform architecture for high-performance ultrahigh-capacity lithium-ion battery cathodes. Adv Energy Mater. 2016;6(2):1501594.

    Article  Google Scholar 

  12. Chen Y, Wang Y, Wang Z, Zou M, Zhang H, Zhao W, Yousaf M, Yang L, Cao A, Han PRS. Densification by compaction as an effective low-cost method to attain a high areal lithium storage capacity in a CNT@Co3O4 sponge. Adv Energy Mater. 2018;8(19):1702981.

    Article  Google Scholar 

  13. Pang GY, Zhuang WD, Bai XT, Ban LQ, Zhao CR, Sun XY. Research advances of co-free and Ni-rich LiNixMn1xO2 (0.5<x<1) cathode materials. Chin J Rare Met. 2020;44(9):996.

    Google Scholar 

  14. Braun PV, Cho J, Pikul JH, King WP, Zhang H. High power rechargeable batteries. Curr Opin Solid State Mater Sci. 2012;16(4):186.

    Article  CAS  Google Scholar 

  15. Shen F, Luo W, Dai J, Yao Y, Zhu M, Hitz E, Tang Y, Chen Y, Sprenkle VL, Li X, Hu L. Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Adv Energy Mater. 2016;6(14):1600377.

    Article  Google Scholar 

  16. Huang SF, Lv Y, Tie D, Yu Y, Zhao YF. Realizing simultaneously enhanced energy and power density full-cell construction using mixed hard carbon/Li4Ti5O12 electrode. Rare Met. 2021;40(1):65.

    Article  CAS  Google Scholar 

  17. Cheng HM, Li F. Charge delivery goes the distance. Science. 2017;356(6338):582.

    Article  CAS  Google Scholar 

  18. Sun H, Zhu J, Baumann D, Peng L, Xu Y, Shakir I, Huang Y, Duan X. Hierarchical 3D electrodes for electrochemical energy storage. Nat Rev Mater. 2019;4(1):45.

    Article  Google Scholar 

  19. Ji H, Zhang L, Pettes MT, Li H, Chen S, Shi L, Piner R, Ruoff RS. Ultrathin graphite foam: a three-dimensional conductive network for battery electrodes. Nano Lett. 2012;12(5):2446.

    Article  CAS  Google Scholar 

  20. Xu J, Tan Z, Zeng W, Chen G, Wu S, Zhao Y, Ni K, Tao Z, Ikram M, Ji H, Zhu Y. A hierarchical carbon derived from sponge-templated activation of graphene oxide for high-performance supercapacitor electrodes. Adv Mater. 2016;28(26):5222.

    Article  CAS  Google Scholar 

  21. Zhou L, Ning W, Wu C, Zhang D, Wei W, Ma J, Li C, Chen L. 3D-printed microelectrodes with a developed conductive network and hierarchical pores toward high areal capacity for microbatteries. Adv Mater Technol. 2019;4(2):1800402.

    Google Scholar 

  22. Sun C, Liu S, Shi X, Lai C, Liang J, Chen Y. 3D printing nanocomposite gel-based thick electrode enabling both high areal capacity and rate performance for lithium-ion battery. Chem Eng J. 2020;381:122641.

    Article  CAS  Google Scholar 

  23. Zhang ZJ, Zhao J, Qiao ZJ, Wang JM, Sun SH, Fu WX, Zhang XY, Yu ZY, Dou YH, Kang JL, Yuan D, Feng YZ, Ma JM. Nonsolvent-induced phase separation-derived TiO2 nanotube arrays/porous Ti electrode as high-energy-density anode for lithium-ion batteries. Rare Met. 2020;40(2):393.

    Article  Google Scholar 

  24. Long JW, Dunn B, Rolison DR, White HS. Three-dimensional battery architectures. Chem Rev. 2004;104(10):4463.

    Article  CAS  Google Scholar 

  25. Zhang H, Yu X, Braun PV. Three-dimensional bicontinuous ultrafast-charge and-discharge bulk battery electrodes. Nat Nanotechnol. 2011;6(5):277.

    Article  CAS  Google Scholar 

  26. Chen C, Zhang Y, Li Y, Dai J, Song J, Yao Y, Gong Y, Kierzewski I, Xie J, Hu L. All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ Sci. 2017;10(2):538.

    Article  CAS  Google Scholar 

  27. Lee SY, Cho SJ, Choi KH, Yoo JT, Kim JH, Lee YH, Chun SJ, Park SB, Choi DH, Wu Q, Lee SY. Hetero-nanonet rechargeable paper batteries: toward ultrahigh energy density and origami foldability. Adv Funct Mater. 2015;25(38):6029.

    Article  Google Scholar 

  28. Li H, Tao Y, Zheng X, Luo J, Kang F, Cheng HM, Yang QH. Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage. Energy Environ Sci. 2016;9(10):3135.

    Article  CAS  Google Scholar 

  29. Wang B, Ryu J, Choi S, Song G, Hong D, Hwang C, Chen X, Wang B, Li W, Song HK, Park S, Ruoff RS. Folding graphene film yields high areal energy storage in lithium-ion batteries. ACS Nano. 2018;12(2):1739.

    Article  CAS  Google Scholar 

  30. Behr S, Amin R, Chiang YM, Tomsia AP. Highly-structured, additive-free lithium-ion cathodes by freeze-casting technology. CFI Ceram Forum. 2015;92(4):39.

    Google Scholar 

  31. Sander JS, Erb RM, Li L, Gurijala A, Chiang YM. High-performance battery electrodes via magnetic templating. Nat Energy. 2016;1(8):1.

    Article  Google Scholar 

  32. Shi Y, Zhou X, Zhang J, Bruck AM, Bond AC, Marschilok AC, Takeuchi KJ, Takeuchi ES, Yu G. Nanostructured conductive polymer gels as a general framework material to improve electrochemical performance of cathode materials in li-ion batteries. Nano Lett. 2017;17(3):1906.

    Article  CAS  Google Scholar 

  33. Sereno NM, Hill SE, Mitchell JR. Impact of the extrusion process on xanthan gum behaviour. Carbohydr Res. 2007;342(10):1333.

    Article  CAS  Google Scholar 

  34. Morris ER, Nishinari K, Rinaudo, M. Gelation of gellan-a review. Food Hydrocoll. 2012; 28(2):373.

    Article  CAS  Google Scholar 

  35. Mudgil D, Barak S, Khatkar BS. X-ray diffraction, IR spectroscopy and thermal characterization of partially hydrolyzed guar gum. Int J Biol Macromol. 2012;50(4):1035.

    Article  CAS  Google Scholar 

  36. Velimirovic M, Chen H, Simons Q, Bastiaens L. Reactivity recovery of guar gum coupled mZVI by means of enzymatic breakdown and rinsing. J Contam Hydrol. 2012;142–143:1.

    Article  Google Scholar 

  37. Maia AMS, Silva HVM, Curti PS, Balaban RC. Study of the reaction of grafting acrylamide onto xanthan gum. Carbohydr Polym. 2012;90(2):778.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key Research and Development Program of China (No. 2016YFB0100300), the National Natural Science Foundation of China (Nos. U1864213 and 51871113) and the Key Project of Scientific Research Plan of Colleges and Universities in Xinjiang (No. XJEDU2018I015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi Su or Xin-Hua Liu.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 10938 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, CC., Su, Z., Gao, XL. et al. Ultra-high-energy lithium-ion batteries enabled by aligned structured thick electrode design. Rare Met. 41, 14–20 (2022). https://doi.org/10.1007/s12598-021-01785-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01785-2

Navigation