Skip to main content
Log in

Enhancement of self-powered humidity sensing of graphene oxide–based triboelectric nanogenerators by addition of graphene oxide nanoribbons

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A triboelectric nanogenerator (TENG) electrode sensitive to the adsorption of water molecules has been introduced to create a self-powered humidity sensor. Graphene oxide (GO) nanosheets and graphene oxide nanoribbon (GONR) possessing oxygenated functional groups, as well as high dielectric constants, have been proposed as appropriate candidates for this purpose. GO papers have been fabricated in three forms, i.e. pure  GO paper, uniform composites of GONR and GO, and double-layer structures of GONR on top of  GO. Results showed that all of the prepared paper-based TENGs revealed excellent performances by maximum output voltage above 300 V. As active humidity sensors, the maximum voltage response values of 57%, 124%, and 78% were obtained for GO, GONR+GO, and GONR/GO TENGs, respectively. Besides high sensitivity and precision of all variants, GO+GONR TENG demonstrated a rapid response/recovery behavior (0.3/0.5 s). This phenomenon can be attributed to the higher oxygenated groups and defects on the edges of GONR, which leads to facilitating the bulk diffusion of water molecules. Our results open new avenues of GONR application as an additive to enhance the performance of self-powered humidity sensors, as well as conventional hygrometers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang ZL (2013) Triboelectric Nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 7:9533–9557. https://doi.org/10.1021/nn404614z

    Article  CAS  PubMed  Google Scholar 

  2. Wu C, Wang AC, Ding W, Guo H, Wang ZL (2019) Triboelectric nanogenerator: a foundation of the energy for the new era. Adv Energy Mater 9:1802906. https://doi.org/10.1002/aenm.201802906

    Article  CAS  Google Scholar 

  3. Wang S, Lin L, Wang ZL (2015) Triboelectric nanogenerators as self-powered active sensors. Nano Energy 11:436–462. https://doi.org/10.1016/j.nanoen.2014.10.034

    Article  CAS  Google Scholar 

  4. Lv C, Hu C, Luo J, Liu S, Qiao Y, Zhang Z, Song J, Shi Y, Cai J, Watanabe A (2019) Recent advances in graphene-based humidity sensors. Nanomaterials 9:422. https://doi.org/10.3390/nano9030422

    Article  CAS  PubMed Central  Google Scholar 

  5. Joshi N, Hayasaka T, Liu Y, Liu H, Oliveira ON Jr, Lin L (2018) A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim Acta 185:213. https://doi.org/10.1007/s00604-018-2750-5

    Article  CAS  Google Scholar 

  6. Bi H, Yin K, Xie X, et al Ultrahigh humidity sensitivity of graphene oxide. Sci Rep 7

  7. Borini S, White R, Wei D, Astley M, Haque S, Spigone E, Harris N, Kivioja J, Ryhänen T (2013) Ultrafast graphene oxide humidity sensors. ACS Nano 7:11166–11173. https://doi.org/10.1021/nn404889b

    Article  CAS  PubMed  Google Scholar 

  8. Park EU, Choi BI, Kim JC, Woo SB, Kim YG, Choi Y, Lee SW (2018) Correlation between the sensitivity and the hysteresis of humidity sensors based on graphene oxides. Sens Actuators B Chem 258:255–262. https://doi.org/10.1016/j.snb.2017.11.104

    Article  CAS  Google Scholar 

  9. Wan N, Wang T, Tan X, Lu S, Zhou LL, Huang JQ, Pan W, Yang YM, Shao ZY (2018) Microstructure related synergic sensoring mechanism in graphene oxide humidity sensor. J Phys Chem C 122:830–838. https://doi.org/10.1021/acs.jpcc.7b09744

    Article  CAS  Google Scholar 

  10. Wee B-H, Khoh W-H, Sarker AK, Lee CH, Hong JD (2015) A high-performance moisture sensor based on ultralarge graphene oxide. Nanoscale 7:17805–17811. https://doi.org/10.1039/C5NR05726D

    Article  CAS  PubMed  Google Scholar 

  11. Zhu C, Tao L-Q, Wang Y, Zheng K, Yu J, L X, Chen X, Huang Y (2020) Graphene oxide humidity sensor with laser-induced graphene porous electrodes. Sens Actuators B Chem 325:128790. https://doi.org/10.1016/j.snb.2020.128790

    Article  CAS  Google Scholar 

  12. Toda K, Furue R, Hayami S (2015) Recent progress in applications of graphene oxide for gas sensing: a review. Anal Chim Acta 878:43–53. https://doi.org/10.1016/j.aca.2015.02.002

    Article  CAS  PubMed  Google Scholar 

  13. Ejehi F, Mohammadpour R, Asadian E, Sasanpour P, Fardindoost S, Akhavan O (2020) Graphene oxide papers in nanogenerators for self-powered humidity sensing by finger tapping. Sci Rep 10:7312. https://doi.org/10.1038/s41598-020-64490-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li N (2017) Ultrahigh humidity sensitivity of graphene oxide combined with Ag nanoparticles RSC Adv 9

  15. Zhang D, Tong J, Xia B, Xue Q (2014) Ultrahigh performance humidity sensor based on layer-by-layer self-assembly of graphene oxide/polyelectrolyte nanocomposite film. Sens Actuators B Chem 203:263–270. https://doi.org/10.1016/j.snb.2014.06.116

    Article  CAS  Google Scholar 

  16. Leng X, Luo D, Xu Z, Wang F (2018) Modified graphene oxide/Nafion composite humidity sensor and its linear response to the relative humidity. Sens Actuators B Chem 257:372–381. https://doi.org/10.1016/j.snb.2017.10.174

    Article  CAS  Google Scholar 

  17. Xu J, Gu S, Lu B (2015) Graphene and graphene oxide double decorated SnO 2 nanofibers with enhanced humidity sensing performance. RSC Adv 5:72046–72050. https://doi.org/10.1039/C5RA10571D

    Article  CAS  Google Scholar 

  18. Zhang D, Liu J, Xia B (2016) Layer-by-layer self-assembly of zinc oxide/graphene oxide hybrid toward ultrasensitive humidity sensing. IEEE Electron Device Lett 37:916–919. https://doi.org/10.1109/LED.2016.2565728

    Article  CAS  Google Scholar 

  19. Sun L, Haidry AA, Fatima Q, Li Z, Yao Z (2018) Improving the humidity sensing below 30% RH of TiO2 with GO modification. Mater Res Bull 99:124–131. https://doi.org/10.1016/j.materresbull.2017.11.001

    Article  CAS  Google Scholar 

  20. Fu T, Zhu J, Zhuo M, Guan B, Li J, Xu Z, Li Q (2014) Humidity sensors based on graphene/SnO x /CF nanocomposites. J Mater Chem C 2:4861–4866. https://doi.org/10.1039/C4TC00440J

    Article  CAS  Google Scholar 

  21. Li B, Tian Q, Su H, Wang X, Wang T, Zhang D (2019) High sensitivity portable capacitive humidity sensor based on In2O3 nanocubes-decorated GO nanosheets and its wearable application in respiration detection. Sens Actuators B Chem 299:126973. https://doi.org/10.1016/j.snb.2019.126973

    Article  CAS  Google Scholar 

  22. Burman D, Ghosh R, Santra S, Guha PK (2016) Highly proton conducting MoS 2 /graphene oxide nanocomposite based chemoresistive humidity sensor. RSC Adv 6:57424–57433. https://doi.org/10.1039/C6RA11961A

    Article  CAS  Google Scholar 

  23. Jha RK, Burman D, Santra S, Guha PK (2017) WS 2 /GO nanohybrids for enhanced relative humidity sensing at room temperature. IEEE Sensors J 17:7340–7347. https://doi.org/10.1109/JSEN.2017.2757243

    Article  CAS  Google Scholar 

  24. Liu B, Sun H, Peng T, Yang J, Ren Y, Ma J, Tang G, Wang L, Huang S (2020) High selectivity humidity sensors of functionalized graphite oxide with more epoxy groups. Appl Surf Sci 503:144312. https://doi.org/10.1016/j.apsusc.2019.144312

    Article  CAS  Google Scholar 

  25. Wang C, Zhang L, Huang H, Xi R, Jiang DP, Zhang SH, Wang LJ, Chen ZY, Pan GB (2019) A nanocomposite consisting of ZnO decorated graphene oxide nanoribbons for resistive sensing of NO2 gas at room temperature. Microchim Acta 186:554. https://doi.org/10.1007/s00604-019-3628-x

    Article  CAS  Google Scholar 

  26. Higginbotham AL, Kosynkin DV, Sinitskii A, Sun Z, Tour JM (2010) Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS Nano 4:2059–2069. https://doi.org/10.1021/nn100118m

    Article  CAS  PubMed  Google Scholar 

  27. Asadian E, Shahrokhian S, Zad AI, Jokar E (2014) In-situ electro-polymerization of graphene nanoribbon/polyaniline composite film: application to sensitive electrochemical detection of dobutamine. Sens Actuators B Chem 196:582–588. https://doi.org/10.1016/j.snb.2014.02.049

    Article  CAS  Google Scholar 

  28. An Wong CH, Pumera M (2014) Highly conductive graphene nanoribbons from the reduction of graphene oxide nanoribbons with lithium aluminium hydride. J Mater Chem C 2:856–863. https://doi.org/10.1039/C3TC31688B

    Article  Google Scholar 

  29. He B, Li M, Li M (2020) Electrochemical determination of sulfamethazine using a gold electrode modified with multi-walled carbon nanotubes, graphene oxide nanoribbons and branched aptamers. Microchim Acta 187:274. https://doi.org/10.1007/s00604-020-04244-4

    Article  CAS  Google Scholar 

  30. Faniyi IO, Fasakin O, Olofinjana B, Adekunle AS, Oluwasusi TV, Eleruja MA, Ajayi EOB (2019) The comparative analyses of reduced graphene oxide (RGO) prepared via green, mild and chemical approaches. SN Appl Sci 1:1181. https://doi.org/10.1007/s42452-019-1188-7

    Article  CAS  Google Scholar 

  31. Wang X, Hu Y, Min J, Li S, Deng X, Yuan S, Zuo X (2018) Adsorption characteristics of phenolic compounds on graphene oxide and reduced graphene oxide: a batch experiment combined theory calculation. Appl Sci 8:1950. https://doi.org/10.3390/app8101950

    Article  CAS  Google Scholar 

  32. Loryuenyong V, Totepvimarn K, Eimburanapravat P, Boonchompoo W, Buasri A (2013) Preparation and characterization of reduced graphene oxide sheets via water-based exfoliation and reduction methods. Adv Mater Sci Eng 2013:1–5. https://doi.org/10.1155/2013/923403

    Article  CAS  Google Scholar 

  33. Luceño-Sánchez JA, Maties G, Gonzalez-Arellano C, Díez-Pascual AM (2018) Synthesis and characterization of graphene oxide derivatives via functionalization reaction with hexamethylene diisocyanate. Proceedings 3:8. https://doi.org/10.3390/IOCN_2018-1-05485

    Article  Google Scholar 

  34. Niu S, Wang S, Lin L, Liu Y, Zhou YS, Hu Y, Wang ZL (2013) Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ Sci 6:3576. https://doi.org/10.1039/c3ee42571a

    Article  Google Scholar 

  35. Lian B, De Luca S, You Y et al (2018) Extraordinary water adsorption characteristics of graphene oxide. Chem Sci 9:5106–5111. https://doi.org/10.1039/C8SC00545A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu R, Gong T, Zhang K, Lee C (2017) Graphene oxide papers with high water adsorption capacity for air dehumidification. Sci Rep 7:9761. https://doi.org/10.1038/s41598-017-09777-y

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yao Y, Chen X, Zhu J, et al (2012) The effect of ambient humidity on the electrical properties of graphene oxide films 7

  38. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  39. Shen J, Li Z, Yu J, Ding B (2017) Humidity-resisting triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy 40:282–288. https://doi.org/10.1016/j.nanoen.2017.08.035

    Article  CAS  Google Scholar 

  40. Baxter LK (1997) Capacitive sensors: design and applications, 1. Print. IEEE press, New York, NY

  41. Feng X, Chen W, Yan L (2015) Free-standing dried foam films of graphene oxide for humidity sensing. Sens Actuators B Chem 215:316–322. https://doi.org/10.1016/j.snb.2015.03.068

    Article  CAS  Google Scholar 

  42. An J, Le T-SD, Huang Y et al (2017) All-graphene-based highly flexible noncontact electronic skin. ACS Appl Mater Interfaces 9:44593–44601. https://doi.org/10.1021/acsami.7b13701

    Article  CAS  PubMed  Google Scholar 

  43. Huang Y, Cheng H, Shi G, Qu L (2017) Highly efficient moisture-triggered nanogenerator based on graphene quantum dots. ACS Appl Mater Interfaces 9:38170–38175. https://doi.org/10.1021/acsami.7b12542

    Article  CAS  PubMed  Google Scholar 

  44. Su Y, Xie G, Wang S, Tai H, Zhang Q, du H, Zhang H, du X, Jiang Y (2017) Novel high-performance self-powered humidity detection enabled by triboelectric effect. Sens Actuators B Chem 251:144–152. https://doi.org/10.1016/j.snb.2017.04.039

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from the Iran National Science Foundation (INSF, Num: 98005876) and the Office of Research Affairs of Sharif University of Technology (QA971617).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Raheleh Mohammadpour or Pezhman Sasanpour.

Ethics declarations

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 330 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ejehi, F., Mohammadpour, R., Asadian, E. et al. Enhancement of self-powered humidity sensing of graphene oxide–based triboelectric nanogenerators by addition of graphene oxide nanoribbons. Microchim Acta 188, 251 (2021). https://doi.org/10.1007/s00604-021-04921-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04921-y

Keywords

Navigation