Skip to main content
Log in

Polyacrylamide-polyaniline composites: the effect of crosslinking on thermal, swelling, porosity, crystallinity, and conductivity properties

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

When the synthesis of hydrogels, which are a hydrophilic group of polymers, occurs below the freezing point of water, the hydrogels gain a perfect property: porosity. Hydrogels with this property and resulting sponge-like structure are called cryogels (CRYs). The porosity of cryogels is affected by the amount of crosslinker used. In this study, how the amount of crosslinker affected the porosity initially was investigated, along with thermal, swelling, and crystallinity properties of polyacrylamide (PAAM) cryogels. Additionally, a series of composites (COMs) were synthesized with polyaniline (PAN) in the pore spaces of CRYs and again the effect of varying pore size on the electrical conductivity of COMs was researched. In the cryogel series, as the amount of N,N′-methylenbisacrylamide (MBA) increased, the pore size increased. The S, P, Ps, and Vp parameters increased in general with the MBA increase. The conductivity values of composites were determined in the interval of 1.6 × 10−3-4.5 × 10−3 S cm−1.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Savina IN,Galaev IY (2016) Production of synthetic cryogels and the study of porosity theory, supermacroporous cryogels: biomedical and biotechnological applications. In: Kumar A (ed) CRC Press, pp 91–110

  2. Lozinsky VI, Galaev IY, Plieva FM, Savina IN, Jungvid H, Mattiasson B (2003) Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol 21:445–451

    Article  CAS  Google Scholar 

  3. Lozinsky VI (2008) Polymeric cryogels as a new family of macroporous and supermacroporous materials for biotechnological purposes. Russ Chem Bull Int Ed 57:1015–1032

    Article  CAS  Google Scholar 

  4. Henderson TMA, Ladewig K, Haylock DN, McLeanb KM, O'Connor AJ (2013) Cryogels for biomedical applications. J Mater Chem B 1:2682–2695

    Article  CAS  Google Scholar 

  5. Yang C, Zhou X, Liu Y, Wang J, Tian L, Zhang Y, Hu X (2016) Charged groups synergically enhance protein imprinting in amphoteric polyacrylamide cryogels. J Appl Polym Sci 133:1–6

    Google Scholar 

  6. Yang C, Liu G, Zhou X, Liu Y, Wang J, Tian L, Hu X, Wang Y (2015) Polyacrylamide based cryogels as catalysts for biodiesel. Catal Lett 145:1778–1783

    Article  CAS  Google Scholar 

  7. Sedlacik T, Proks V, Slouf M, Duskova-Smrckova M, Studenovska H, Rypacek F (2015) Macroporous biodegradable cryogels of synthetic poly(α-amino acids). Biomacromolecules 16:3455–3465

    Article  CAS  Google Scholar 

  8. Wang J, Wang Q, Tian L, Yang C, Yu S, Yang C (2015) Research progress of the molecularly imprinted cryogel. Chin J Anal Chem 43:1777–1784

    Article  CAS  Google Scholar 

  9. Sapurina I, Stejskal J (2008) The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polym Int 57:1295–1325

    Article  CAS  Google Scholar 

  10. Mostafaei A, Zolriasatein A (2012) Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods. Prog Nat Sci-Mat 22:273–280

    Article  Google Scholar 

  11. Sedenkova I, Trchova M, Stejskal J (2008) Thermal degradation of polyaniline films prepared in solutions of strong and weak acids and in water-FTIR and Raman spectroscopic studies. Polym Degrad Stabil 93:2147–2157

    Article  CAS  Google Scholar 

  12. Gurunathan K, Amalnerkar DP, Trivedi DC (2003) Synthesis and characterization of conducting polymer composite (PAn/TiO2) for cathode material in rechargeable battery. Mater Lett 57:1642–1648

    Article  CAS  Google Scholar 

  13. Jia W, Segal E, Kornemandel D, Lamhot Y, Narkis M, Siegmann A (2002) Polyaniline-DBSA/organophilic clay nanocomposites: synthesis and characterization. Synthetic Met 128:115–120

    Article  CAS  Google Scholar 

  14. Peng C, Zhang S, Jewell D, Chen GZ (2008) Carbon nanotube and conducting polymer composites for supercapacitors. Prog Nat Sci 18:777–788

    Article  CAS  Google Scholar 

  15. Li D, Huang J, Kaner RB (2009) Polyaniline nanofibers: a unique polymernanostructure for versatile applications. Acc Chem Res 42:135–145

    Article  CAS  Google Scholar 

  16. Stejskal J, Gilbert RG (2002) Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure Appl Chem 74:857–867

    Article  CAS  Google Scholar 

  17. Blinova NV, Stejskal J, Trchova M, Prokes J (2008) Control of polyaniline conductivity and contact angles by partial protonation. Polym Int 57:66–69

    Article  CAS  Google Scholar 

  18. Molapo KM, Ndangili PM, Ajayi RF, Mbambisa G, Mailu SM, Njomo N, Masikini M, Baker P, Iwuoha II (2012) Electronics of conjugated polymers (I): polyaniline. Int J Electrochem Sci 7:11859–11875

    CAS  Google Scholar 

  19. Cardoso MJR, Lima MFS, Lenz DM (2007) Polyaniline synthesized with functionalized sulfonic acids for blends manufacture. Mater Res 10:425–429

    Article  CAS  Google Scholar 

  20. Bhadra S, Khastgir D, Singhaa NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34:783–810

    Article  CAS  Google Scholar 

  21. Carvalho BMA, Da Silva SL, Da Silva LHM, Minim VPR, Da Silva MCH, Carvalho LM, Minim LA (2014) Cryogel poly(acrylamide): synthesis, structure and applications. Sep Purif Rev 43:241–262

    Article  CAS  Google Scholar 

  22. Gun'ko VM, Savina IN, Mikhalovsky SV (2013) Cryogels: morphological, structural and adsorption characterisation. Adv Colloid Interf Sci 187:1–46

    Article  Google Scholar 

  23. Xu F, Zheng G, Wu D, Liang Y, Li Z, Fu R (2010) Improving electrochemical performance of polyaniline by introducing carbon aerogel as filler. Phys Chem Chem Phys 12:3270–3275

    Article  CAS  Google Scholar 

  24. Tang Q, Wu J, Sun H, Lin J, Fan S, Hu D (2008) Polyaniline/polyacrylamide conducting composite hydrogel with a porous structure. Carbohyd Polym 74:215–219

    Article  CAS  Google Scholar 

  25. Tang Q, Wu J, Sun H, Fan S, Hu D, Lin J (2007) Superabsorbent conducting hydrogel from poly (acrylamide-aniline) with thermo-sensitivity and release properties. Carbohyd Polym 73:473–481

    Article  Google Scholar 

  26. Okay O, Lozinsky VI (2014) Synthesis and structure–property relationships of cryogels. Adv Polym Sci 263:103–157

    Article  CAS  Google Scholar 

  27. Okay O (2000) Macroporous copolymer networks. Prog Polym Sci 25:711–779

    Article  CAS  Google Scholar 

  28. Bhattacharya P, Dhibar S, Hatui G, Mandal A, Das T, Das CK (2014) Graphene decorated with hexagonal shaped M-type ferrite and polyaniline wrapper: a potential candidate for electromagnetic wave absorbing and energy storage device applications. R Soc Chem 4:17039–17053

    CAS  Google Scholar 

  29. Xu H, Zhang J, Chen Y, Lu H, Zhuang J (2014) Electrochemical polymerization of polyaniline doped with Cu2+ as the electrode material for electrochemical supercapacitors. R Soc Chem 4:5547–5552

    CAS  Google Scholar 

  30. Gundogan N, Okay O, Oppermann W (2004) Swelling, elasticity and spatial ınhomogeneity of poly(N, N-dimethylacrylamide) hydrogels formed at various polymer concentrations. Macromol Chem Phys 205:814–823

    Article  CAS  Google Scholar 

  31. Okay O, Kurz M, Lutz K, Funke W (1995) Cyclization and reduced pendant vinyl group reactivity during the free-radical crosslinking polymerization of 1, 4-divinylbenzene. Macromolecules 28:2728–2737

    Article  CAS  Google Scholar 

  32. Funke W, Okay O, Joos-Müller B (1998) Microgels-intramolecularly crosslinked macromolecules with a globular structure. Adv Polym Sci 136:139–234

    Article  Google Scholar 

  33. Ansari R, Price WE, Wallace GG (1996) Effect of thermal treatment on electroactivity of polyaniline. Polymer 37:917–923

    Article  CAS  Google Scholar 

  34. Pandey SS, Gerard M, Sharma AL, Malhotra BD (2000) Thermal analysis of chemically synthesized polyemeraldine base. J Appl Polym Sci 75:149–155

    Article  CAS  Google Scholar 

  35. Mentus S, Ciric-Marjanovic G, Miroslava T, Stejkal J (2009) Conducting carbonized polyaniline nanotubes. Nanotechnology 20:245601

    Article  Google Scholar 

  36. Bhandra S, Khastgir D (2008) Extrinsic and intrinsic structural change during heat treatment of polyaniline. Polym Degrad Stab 93:1094–1099

    Article  Google Scholar 

  37. Bhat NV, Joshi NV (1993) Investigation of the properties of polyacrylamide-polyaniline composite and its application as a battery electrode. J Appl Polym Sci 50:1423–1427

    Article  CAS  Google Scholar 

  38. Dai T, Qing X, Wang J, Shen C, Lu Y (2010) Interfacial polymerization to high-quality polyacrylamide/polyaniline composite hydrogels. Compos Sci Technol 70:498–503

    Article  CAS  Google Scholar 

  39. Verma PK, Sardar PS, Ghosh S, Biswas M (2009) Conducting nanocomposites of polyacrylamide with acetylene black and polyaniline. Polym Compos 30:490–496

    Article  CAS  Google Scholar 

  40. Xiang Q, Xie HQ (1996) Preparation and characterization of alkali soluble polyacrylamide-g-polyaniline. Eur Polym J 32:865–868

    Article  CAS  Google Scholar 

  41. Das B, Kar S, Chakraborty S, Chakraborty D, Gangopadhyay S (1998) Synthesis and characterization of polyacrylamide–polyaniline conductive blends. J Appl Polym Sci 69:841–844

    Article  CAS  Google Scholar 

  42. Prabhakar R, Kumar D (2016) Influence of dopant ions on the properties of conducting polyacrylamide/polyaniline hydrogels. Polym-Plast Technol Eng 55:46–53

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their thanks to Assoc. Prof. Dr. Barbaros Demirselcuk (Canakkale Onsekiz Mart University, Technical Sciences Vocational School, Department of Energy and Electric) for conductivity measurements.

Funding

This research was supported by the Scientific Projects Commission of Canakkale Onsekiz Mart University, 2017/1341.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sema Ekici.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celik, M.U., Ekici, S. Polyacrylamide-polyaniline composites: the effect of crosslinking on thermal, swelling, porosity, crystallinity, and conductivity properties. Colloid Polym Sci 297, 1331–1343 (2019). https://doi.org/10.1007/s00396-019-04545-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-019-04545-y

Keywords

Navigation