Skip to main content
Log in

Magnetic separation of metal sulfides/oxides by Fe3O4 at room temperature and atmospheric pressure

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The recovery of heterogeneous catalysts can save costs and avoid secondary pollution, but its separation efficiency and recovery cost are limited by conventional separation methods such as precipitation–flocculation, centrifugation and filtration. In this paper, we found that surface-defective metal sulfides/oxides (WS2, CuS, ZnS, MoS2, CdS, TiO2, MoO2 and ZnO) commonly used in advanced oxidation processes (AOPs) could be magnetically recovered at room temperature and atmospheric pressure by mechanically mixing with Fe3O4. Zeta potential, Raman, X-ray photoelectron spectroscopy (XPS) and electro-spin resonance (ESR) spectra were measured to explore the mechanism of the magnetic separation phenomenon. The exposed active metal sites on the surface of defective metal sulfides/oxides are beneficial for the formation of chemical bonds, which are combined with electrostatic force to be responsible for the magnetic separation. Moreover, other factors affecting the magnetic separation were also investigated, such as the addition of amount of Fe3O4, different solvents and particle sizes. Finally, WS2 was chosen to be applied as a co-catalyst in Fenton reaction, which could be well separated by the magnetic Fe3O4 to achieve the recycle of catalyst in Fenton reaction. Our research provides a general strategy for the recycle of metal sulfides/oxides in the catalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zea H, Lester K, Datye AK, Rightor E, Gulotty R, Waterman W, Smith M. The influence of Pd–Ag catalyst restructuring on the activation energy for ethylene hydrogenation in ethylene–acetylene mixtures. Appl Catal A-Gen. 2005;282(1):237.

    Article  Google Scholar 

  2. Cheng Z, Wang W, Yang LM, Xu Z, Ji ZG, Huang ST. Preparation of La-TiO2 and photocatalytic degradation of petrochemical secondary effluent. Chin. J. Rare Meals. 2018;42(9):950.

    Google Scholar 

  3. Jiang Z, Zhu K, Lin Z, Jin S, Guang L. Structure and Raman scattering of Mg-doped ZnO nanoparticles prepared by sol–gel method. Rare Met. 2018;37(10):881.

    Article  Google Scholar 

  4. Zhao D, Liao Y, Zhang Z. Toxicity of ionic liquids. Clean. 2007;35(1):42.

    Google Scholar 

  5. Carl Christoph T, Christian M, Willi B, Sebastian R, André H, Rainer H. Modern separation techniques for the efficient workup in organic synthesis. Angew Chem Int Ed. 2010;41(21):3964.

    Google Scholar 

  6. Barbaro P, Liguori F, Linares N, Marrodan CM. Heterogeneous bifunctional metal/acid catalysts for selective chemical processes. Eur J Inorg Chem. 2012;2012(24):3807.

    Article  Google Scholar 

  7. Anipsitakis GP, Dionysiou DD. Radical generation by the interaction of transition metals with common oxidants. Environ Sci Technol. 2004;38(13):3705.

    Article  Google Scholar 

  8. Nadkarni SV, Gawande MB, Jayaram RV, Nagarkar JM. Synthesis of bis(indolyl)methanes catalyzed by surface modified zirconia. Catal Commun. 2008;9(8):1728.

    Article  Google Scholar 

  9. Fang W, Zhou L, Shen B, Zhou Y, Yi Q, Xing M, Zhang J. Advanced visible-light-driven activity for the degradation of organic dyes. Res Chem Intermed. 2018;44(8):4609.

    Article  Google Scholar 

  10. Liu Q, Shen J, Hua T, Zhang T, Yang X. 3D Reduced graphene oxide aerogel-mediated Z-scheme photocatalytic system for highly efficient solar-driven water oxidation and removal of antibiotics. Appl Catal B-Environ. 2018;232:562.

    Article  Google Scholar 

  11. Yang X, Tian L, Zhao X, Tang H, Liu Q, Li G. Interfacial optimization of g-C3N4-based Z-scheme heterojunction toward synergistic enhancement of solar-driven photocatalytic oxygen evolution. Appl Catal B-Environ. 2019;244:240.

    Article  Google Scholar 

  12. Svoboda J. Magnetic Techniques for the Treatment of Materials. Berlin: Springer; 2004. 1.

    Google Scholar 

  13. Svoboda J, Fujita T. Recent developments in magnetic methods of material separation. Miner Eng. 2003;16(9):785.

    Article  Google Scholar 

  14. Hillier S, Hodson ME. High-gradient magnetic separation applied to sand-size particles; an example of feldspar separation from mafic minerals. J Sediment Res. 1997;67(5):975.

    Article  Google Scholar 

  15. Kolm H, Oberteuffer J, Kelland D. High-gradient magnetic separation. Sci Am. 1975;233(5):46.

    Article  Google Scholar 

  16. Fletcher D. Fine particle high gradient magnetic entrapment. IEEE Trans Magn. 1991;27(4):3655.

    Article  Google Scholar 

  17. Hubbuch JJ, Matthiesen DB, Hobley TJ, Thomas OR. High gradient magnetic separation versus expanded bed adsorption: a first principle comparison. Bioseparation. 2001;10(1):99.

    Article  Google Scholar 

  18. Moeser GD, Roach KA, Green WH, Alan Hatton T, Laibinis PE. High-gradient magnetic separation of coated magnetic nanoparticles. AIChE J. 2004;50(11):2835.

    Article  Google Scholar 

  19. Majewski P, Thierry B. Functionalized magnetite nanoparticles—synthesis, properties, and bio-applications. Crit Rev Solid State. 2007;32(3–4):203.

    Article  Google Scholar 

  20. Ngomsik AF, Bee A, Draye M, Cote G, Cabuil V. Magnetic nano- and microparticles for metal removal and environmental applications: a review. Comptes Rendus Chim. 2005;8(6):963.

    Article  Google Scholar 

  21. Menini L, Pereira MC, Parreira LA, Fabris JD, Gusevskaya EV. Cobalt- and manganese-substituted ferrites as efficient single-site heterogeneous catalysts for aerobic oxidation of monoterpenic alkenes under solvent-free conditions. J Catal. 2008;254(2):355.

    Article  Google Scholar 

  22. Stein M, Wieland J, Steurer P, Tölle F, Mülhaupt R, Breit B. Iron nanoparticles supported on chemically-derived graphene: catalytic hydrogenation with magnetic catalyst separation. Adv Synth Catal. 2011;353(4):523.

    Article  Google Scholar 

  23. Rossi LM, Costa NJS, Silva FP, Wojcieszak R. Magnetic nanomaterials in catalysis: advanced catalysts for magnetic separation and beyond. Green Chem. 2014;16(6):2906.

    Article  Google Scholar 

  24. Safarik I, Safarikova M. Magnetic techniques for the isolation and purification of proteins and peptides. Biomagn Res Technol. 2004;2(1):7.

    Article  Google Scholar 

  25. Hajian R, Ehsanikhah A. Manganese porphyrin immobilized on magnetic MCM-41 nanoparticles as an efficient and reusable catalyst for alkene oxidations with sodium periodate. Chem Phys Lett. 2018;691:146.

    Article  Google Scholar 

  26. Ma Q, Cui Y, Deng X, Li B, Cheng Q, Cheng X. Fabrication of magnetic TiO2 nano-catalyst and its enhanced photocatalytic and recycle performance. J Nanosci Nanotechnol. 2017;17(3):2019.

    Article  Google Scholar 

  27. Chang YC, Chen DH. Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions. J Colloid Interface Sci. 2005;283(2):446.

    Article  Google Scholar 

  28. Liu JF, Zhao ZS, Jiang GB. Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water. Environ Sci Technol. 2008;42(18):6949.

    Article  Google Scholar 

  29. Hudlet S, Jean MS, Roulet B, Berger J, Guthmann C. Electrostatic forces between metallic tip and semiconductor surfaces. J Appl Phys. 1995;77(7):3308.

    Article  Google Scholar 

  30. Martín A, Martínez F, Malfeito J, Palacio L, Prádanos P, Hernández A. Zeta potential of membranes as a function of pH: optimization of isoelectric point evaluation. J Membr Sci. 2003;213(1):225.

    Article  Google Scholar 

  31. Igor C, Laurence DE, Lazare NO, Jean-François F, Simone CJ, Martin S, Hervé M, Pierre D. Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy. Analyst. 2005;130(10):1395.

    Article  Google Scholar 

  32. Zeng W, Feng LP, Su J, Pan HX, Liu ZT. Layer-controlled and atomically thin WS2 films prepared by sulfurization of atomic-layer-deposited WO3 films. J Alloy Compd. 2018;745:834.

    Article  Google Scholar 

  33. Rezaee M, Khoie SMM, Liu KH. The role of brookite in mechanical activation of anatase-to-rutile transformation of nanocrystalline TiO2: an XRD and Raman spectroscopy investigation. CrystEngComm. 2011;13(16):5055.

    Article  Google Scholar 

  34. Xu S, Sun J, Weng L, Hua Y, Liu W, Neville A, Hu M, Gao X. In-situ friction and wear responses of WS2 films to space environment: vacuum and atomic oxygen. Appl Surf Sci. 2018;447:368.

    Article  Google Scholar 

  35. Yen PC, Huang YS, Tiong KK. The growth and characterization of rhenium-doped WS2 single crystals. J Phys: Condens Matter. 2004;16(12):2171.

    Google Scholar 

  36. Yang L, Majumdar K, Liu H, Du Y, Wu H, Hatzistergos M, Hung PY, Tieckelmann R, Tsai W, Hobbs C. Chloride molecular doping technique on 2D materials: WS2 and MoS2. Nano Lett. 2014;14(11):6175.

    Google Scholar 

  37. Karikalan N, Karthik R, Chen SM, Karuppiah C, Elangovan A. Sonochemical synthesis of sulfur doped reduced graphene oxide supported CuS nanoparticles for the non-enzymatic glucose sensor applications. Sci Rep. 2017;7(1):2494.

    Article  Google Scholar 

  38. Wang Q, Ning A, Yan B, Hang H, Li J, Lu X, Liu Y, Wang F, Li Z, Lei Z. High photocatalytic hydrogen production from methanol aqueous solution using the photocatalysts CuS/TiO2. Int J Hydrog Energy. 2013;38(25):10739.

    Article  Google Scholar 

  39. Wen Z, Shao P, Ci S, Yi L, Cai P, Huang P, Cao C. Hollow CuS microcube electrocatalysts for CO2 reduction reaction. Chemelectrochem. 2017;4(10):2593.

    Article  Google Scholar 

  40. Zhang S, Hongyu LI, Qin Z. Promotional effect of F-doped V2O5–WO3/TiO2 catalyst for NH3-SCR of NO at low-temperature. Appl Catal A-Gen. 2012;435(17):156.

    Article  Google Scholar 

  41. Wang J, Chen Y, Zhou W, Tian G, Xiao Y, Fu H, Fu H. Cubic quantum dot/hexagonal microsphere ZnIn2S4 heterophase junction for exceptional visible-light-driven photocatalytic H2 evolution. J Mater Chem A. 2017;5(18):8451.

    Article  Google Scholar 

  42. Zhang Q, Hu S, Fan Z, Liu D, Zhao Y, Ma H, Li F. Preparation of g-C3N4/ZnMoCdS hybrid heterojunction catalyst with outstanding nitrogen photofixation performance under visible light via hydrothermal post-treatment. Dalton Trans. 2016;45(8):3497.

    Article  Google Scholar 

  43. Qi D, Lu L, Xi Z, Wang L, Zhang J. Enhanced photocatalytic performance of TiO2 based on synergistic effect of Ti3+ self-doping and slow light effect. Appl Catal B-Environ. 2014;160(6):621.

    Article  Google Scholar 

  44. Li K, Gao S, Wang Q, Xu H, Wang Z, Huang B, Dai Y, Lu J. In-situ-reduced synthesis of Ti3+ self-doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance under LED light irradiation. ACS Appl Mater Interfaces. 2015;7(17):9023.

    Article  Google Scholar 

  45. An L, Li Y, Luo M, Yin J, Zhao YQ, Xu C, Cheng F, Yang Y, Xi P, Guo S. Atomic-level coupled interfaces and lattice distortion on CuS/NiS2 nanocrystals boost oxygen catalysis for flexible Zn-air batteries. Adv Funct Mater. 2017;27(42):1703779.

    Article  Google Scholar 

  46. Xing M, Xu W, Dong C, Bai Y, Zeng J, Zhou Y, Zhang J, Yin Y. Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes. Chem. 2018;4(6):1359.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the State Key Research Development Program of China (No. 2016YFA0204200), the National Natural Science Foundation of China (Nos. 21822603, 21773062, 21577036, 21377038 and 21237003), Shanghai Pujiang Program (No. 17PJD011) and the Fundamental Research Funds for the Central Universities (No. 22A201514021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Long Zhang or Ming-Yang Xing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, JH., Xiao, YF., Shen, B. et al. Magnetic separation of metal sulfides/oxides by Fe3O4 at room temperature and atmospheric pressure. Rare Met. 38, 379–389 (2019). https://doi.org/10.1007/s12598-019-01232-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01232-3

Keywords

Navigation