Skip to main content
Log in

A facile synthesis of magnetite single-crystal particles by employing GO sheets as template for promising application in magnetic fluid

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

It was reported a facile strategy to fabricate magnetite (Fe3O4) single-crystal particles with critical single-domain size by employing graphene oxide (GO) sheets as template. In this method, the small-sized Fe2O3 nanoparticles were first synthesized, and then low-temperature annealing under H2 would convert them into large-sized Fe3O4 single-crystal particles. The synthetic particles with an average size of 100 nm exhibit high saturation magnetization (Ms) of 0.085 A·m2·g−1, which is very close to theoretical value, being among the highest values in ever reported for Fe3O4 made from chemical methods. On this basis, the small-sized Fe3O4 particles (average size of 30 nm) were also fabricated by coating with Na2CO3 shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sun SH. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv Mater. 2006;18(4):393.

    Article  Google Scholar 

  2. Lei WJ, Yu YS, Yang WW, Feng M, Li HB. A general strategy for synthesizing high-coercivity L10-FePt nanoparticles. Nanoscale. 2017;9(35):12855.

    Article  Google Scholar 

  3. Balasubramanian B, Das B, Skomski R, Zhang WY, Sellmyer DJ. Novel nanostructured rare-earth-free magnetic materials with high energy products. Adv Mater. 2013;25(42):6090.

    Article  Google Scholar 

  4. Yang WW, Lei WJ, Yu YS, Zhu WL, George TA, Li XZ, Sellmyer DJ, Sun SH. From FePt–Fe3O4 to L10-FePt-Fe nanocomposite magnets with a gradient interface. J Mater Chem C. 2015;3(27):7075.

    Article  Google Scholar 

  5. Ma ZH, Zhang TL, Jiang CB. Exchange-coupled SmCo5/Co nanocomposites synthesized by a novel strategy. RSC Adv. 2015;5(108):89128.

    Article  Google Scholar 

  6. Yu YS, Mukherjee P, Tian Y, Li XZ, Shield JE, Sellmyer DJ. Direct chemical synthesis of L10-FePtAu nanoparticles with high coercivity. Nanoscale. 2014;6(20):12050.

    Article  Google Scholar 

  7. Ma ZH, Zhang TL, Wang H, Jiang CB. Synthesis of SmCo5 nanoparticles with small size and high performance by hydrogenation technique. Rare Met. 2018;37(12):1021.

    Article  Google Scholar 

  8. Liu YH, te Velthuis SGE, Jiang JS, Choi Y, Bader SD, Parizzi AA, Ambaye H, Lauter V. Magnetic structure in Fe/Sm-Co exchange spring bilayers with intermixed interfaces. Phys Rev B. 2011;83(17):174418.

    Article  Google Scholar 

  9. Zheng H, Shao HP, Lin T, Zhao ZF, Guo ZM. Preparation and characterization of silicone-oil-based γ-Fe2O3 magnetic fluid. Rare Met. 2018;37(9):803.

    Article  Google Scholar 

  10. Ma ZH, Yang SX, Zhang T, Jiang CB. The chemical synthesis of SmCo5 single-crystal particles with small size and high performance. Chem Eng J. 2016;304:993.

    Article  Google Scholar 

  11. Zeng H, Li J, Wang ZL, Liu JP, Sun SH. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature. 2002;420(6914):395.

    Article  Google Scholar 

  12. Ma ZH, Zhang T, Jiang CB. A facile synthesis of high performance SmCo5 nanoparticles. Chem Eng J. 2015;264:610.

    Article  Google Scholar 

  13. Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun SH. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater. 2010;22(25):2729.

    Article  Google Scholar 

  14. Ma ZH, Yue M, Wu Q, Li CL, Yu YS. Designing shape anisotropic SmCo5 particles by chemical synthesis to reveal morphological evolution mechanism. Nanoscale. 2018;10(22):10377.

    Article  Google Scholar 

  15. Jun YW, Seo JW, Cheon A. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc Chem Res. 2008;41(2):179.

    Article  Google Scholar 

  16. Lee JE, Lee N, Kim T, Kim J, Hyeon T. Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res. 2011;44(10):893.

    Article  Google Scholar 

  17. Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, Muller RN. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;108(6):2064.

    Article  Google Scholar 

  18. Reddy LH, Arias JL, Nicolas J, Couvreur P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev. 2012;112(11):5818.

    Article  Google Scholar 

  19. Kim YS, Nakatsuka K, Fujita T, Atarashi T. Application of hydrophilic magnetic fluid to oil seal. J Magn Magn Mater. 1999;201:361.

    Article  Google Scholar 

  20. Poll G, Gabelli A. Formation of lubricant film in rotary sealing contacts: part II-A new measuring principle for lubricant film thickness. ASME J Tribol. 1992;114(2):290.

    Article  Google Scholar 

  21. Frey NA, Peng S, Cheng K, Sun SH. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev. 2009;38(9):2532.

    Article  Google Scholar 

  22. Yang WW, Yu YS, Wang L, Yang CH, Li HB. Controlled synthesis and assembly into anisotropic arrays of magnetic cobalt-substituted magnetite nanocubes. Nanoscale. 2015;7(7):2877.

    Article  Google Scholar 

  23. Lee H, Shin TH, Cheon J, Weissleder R. Recent developments in magnetic diagnostic systems. Chem Rev. 2015;115(19):10690.

    Article  Google Scholar 

  24. Cornell RM, Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses. New York: VCH; 1996. 28.

    Google Scholar 

  25. Xu Z, Shen C, Hou Y, Gao H, Sun SH. Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem Mater. 2009;21(9):1778.

    Article  Google Scholar 

  26. Sun SH, Zeng H, Robinson DB, Raoux S, Rice PM, Wang S, Li GX. Monodisperse MFe2O4 (M = Fe Co, Mn) nanoparticles. J Am Chem Soc. 2004;126(1):273.

    Article  Google Scholar 

  27. Park J, Lee E, Hwang NM, Kang M, Kim SC, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hyeon T. One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew Chem Int Ed. 2005;44(19):2872.

    Article  Google Scholar 

  28. Sun SH, Zeng H. Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc. 2002;124(28):8204.

    Article  Google Scholar 

  29. Hyeon T. Chemical synthesis of magnetic nanoparticles. Chem Commun. 2003;3(8):927.

    Article  Google Scholar 

  30. Deng H, Li XL, Peng Q, Wang X, Chen JP, Li YD. Monodisperse magnetic single-crystal ferrite microspheres. Angew Chem Int Ed. 2005;44(18):2782.

    Article  Google Scholar 

  31. Ge S, Shi XY, Sun K, Li CP, Uher C, Baker JR, Holl MMB, Orr BG. Facile hydrothermal synthesis of iron oxide nanoparticles with tunable magnetic properties. J Phys Chem C. 2009;113(31):13593.

    Article  Google Scholar 

  32. Hui C, Shen CM, Yang TZ, Bao LH, Tian JF, Ding H, Li C, Gao HJ. Large-scale Fe3O4 nanoparticles soluble in water synthesized by a facile method. J Phys Chem C. 2008;112(30):11336.

    Article  Google Scholar 

  33. Ho D, Sun X, Sun SH. Monodisperse magnetic nanoparticles for theranostic applications. Acc Chem Res. 2011;44(10):875.

    Article  Google Scholar 

  34. Wu LH, Mendoza-Garcia A, Li Q, Sun SH. Organic phase syntheses of magnetic nanoparticles and their applications. Chem Rev. 2016;116(18):10473.

    Article  Google Scholar 

  35. Jiang MW, Peng XG. Anisotropic Fe3O4/Mn3O4 hybrid nanocrystals with unique magnetic properties. Nano Lett. 2017;17(6):3570.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51701109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Ling Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, Z., Ma, ZH., Zhi, JK. et al. A facile synthesis of magnetite single-crystal particles by employing GO sheets as template for promising application in magnetic fluid. Rare Met. 38, 764–769 (2019). https://doi.org/10.1007/s12598-018-1197-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1197-5

Keywords

Navigation