Skip to main content

Advertisement

Log in

Synthesis of SmCo5 nanoparticles with small size and high performance by hydrogenation technique

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

SmCo5 nanoparticles (NPs) have promising applications in high-density magnetic storage and magnetic nanocomposites. In this work, A novel method to yield SmCo5 particles with small size and high coercivity was reported. Firstly, Sm2O3–Co NPs with size of 6–15 nm were fabricated by a solvothermal route. Then the agglomerated SmCo5 particles were obtained by thermal reduction of the precursor, which show high coercivity of 2.0 T at room temperature. At last, the as-synthesized SmCo5 particles were further hydrogenated under high hydrogen pressure of 4 MPa at room temperature, where hydrogen absorption process could form small-sized SmCo5Hx particles due to their lattice expansion and hydrogen desorption process could convert SmCo5Hx NPs into SmCo5 NPs. The prepared SmCo5 NPs after hydrogenation, showing well distribution, have a small size of 5–20 nm and room temperature coercivity of 1.22 T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sun SH. Recent Advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv Mater. 2006;18(4):393.

    Article  CAS  Google Scholar 

  2. Rutledge RD, Morris WH, Wellons MS, Gai Z, Shen J, Bentley J, Wittig JE, Lukehart CM. Formation of FePt nanoparticles having high coercivity. J Am Chem Soc. 2006;128(44):14210.

    Article  CAS  Google Scholar 

  3. Balasubramanian B, Das B, Skomski R, Zhang WY, Sellmyer DJ. Novel nanostructured rare-earth-free magnetic materials with high energy products. Adv Mater. 2013;25(42):6090.

    Article  CAS  Google Scholar 

  4. Hao R, Xing R, Xu Z, Hou Y, Gao S, Sun S. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater. 2010;22(25):2729.

    Article  CAS  Google Scholar 

  5. Cui WB, Takahashi YK, Hono K. Nd2Fe14B/FeCo anisotropic nanocomposite films with a large maximum energy product. Adv Mater. 2013;25(14):6530.

    Article  Google Scholar 

  6. Sedó J, Saiz-Poseu J, Busqué F, Ruiz-Molina D. catechol-based biomimetic functional materials. Adv Mater. 2013;25(5):653.

    Article  Google Scholar 

  7. Zhang DT, Wang PF, Yue M, Liu WQ, Zhang JX, Sundararajan JA. High-temperature magnetic properties of anisotropic MnBi/NdFeB hybrid bonded magnets. Rare Met. 2016;35(6):471.

    Article  CAS  Google Scholar 

  8. Zeng H, Li J, Wang ZL, Liu JP, Sun S. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature. 2002;420(6914):395.

    Article  CAS  Google Scholar 

  9. Liu Y, te Velthuis SGE, Jiang JS, Choi Y, Bader SD. Parizzi AA (2011) Magnetic structure in Fe/Sm–Co exchange spring bilayers with intermixed interfaces. Phys. Rev. B. 2011;83(17):100.

    Google Scholar 

  10. Strnat KJ. In: Wohlfarth EP, Buschow KHJ (eds) Ferromagnetic Materials, Vol 4. Chapter 2: Rare Earth Cobalt Permanent Magnets. Amsterdam: North-Holland; 1988. 131.

  11. Larson P, Mazin II, Papaconstantopoulos DA. Calculation of magnetic anisotropy energy in SmCo5. Phys Rev B: Condens Matter. 2003;67(21):214405–11.

    Article  Google Scholar 

  12. Li WF, Gabay AM, Hu XC, Ni C, Hadjipanayis GC. Fabrication and microstructure evolution of single crystalline Sm2Co17 nanoparticles prepared by mechanochemical method. J Phys Chem C. 2013;117(20):10291.

    Article  CAS  Google Scholar 

  13. Weller D, Moser A, Folks L, Best ME, Lee W, Toney MF, Schwickert M, Thiele JU, Doerner MF. High Ku materials approach to 100 Gbits/in2. IEEE Trans Magn. 2000;36(1):10.

    Article  CAS  Google Scholar 

  14. Wang JP. FePt magnetic nanoparticles and their assembly for future magnetic media. Proc IEEE. 2008;96(11):1847.

    Article  CAS  Google Scholar 

  15. Piramanayagam SN, Srinivasan K. Recording media research for future hard disk drives. J Magn Magn Mater. 2009;321(6):485.

    Article  CAS  Google Scholar 

  16. Rong CB, Zhang HW, Chen RJ, Shen BG, He SL. Micromagnetic investigation on the coercivity mechanism of the SmCo5/Sm2Co17 high-temperature magnets. J Appl Phys. 2006;100(12):123913.

    Article  Google Scholar 

  17. Shen Y, Leontsev S, Sheets AO, Horwath JC. Turgut. Z. Effect of flake thickness on coercivity of nanocrystalline SmCo5 bulk prepared from anisotropic nanoflake powder. AIP Adv. 2016;6(5):49.

    Article  Google Scholar 

  18. Sun W, Zhu MG, Fang YK, Liu ZY, Guo ZH, Li W. Microstructures and coercivity mechanism of 2:17-type Sm–Co magnets with high remanence. Rare Met. 2015;. doi:10.1007/s12598-015-0513-6.

    Article  Google Scholar 

  19. Gu H, Xu B, Rao J, Zheng RK, Zhang XX, Fung KK, Wong YCC. Chemical synthesis of narrowly dispersed SmCo5 nanoparticles. J Appl Phys. 2003;93(93):7589.

    Article  CAS  Google Scholar 

  20. Matsushita T, Iwamoto T, Inokuchi M, Toshima N. Novel ferromagnetic materials of SmCo5 nanoparticles in single-nanometer size: chemical syntheses and characterizations. Nanotechnology. 2010;21(9):095603.

    Article  Google Scholar 

  21. Tian J, Zhang S, Qu X, Pan D, Zhang M. Co-reduction synthesis of uniform ferromagnetic SmCo nanoparticles. Mater Lett. 2012;68(2):212.

    Article  CAS  Google Scholar 

  22. Matsushita T, Masuda J, Iwamoto T, Toshima N. Fabrication of SmCox nanoparticles as a potential candidate of materials for super-high-density magnetic memory: use of gold as the third element. Chem Lett. 2007;36(10):1264.

    Article  CAS  Google Scholar 

  23. Chinnasamy CN, Huang JY, Lewis LH, Latha B, Vittoria C, Harris VG. Direct chemical synthesis of high coercivity SmCo nanoblades. Appl Phys Lett. 2008;93(3):032505.

    Article  Google Scholar 

  24. Hou Y, Xu Z, Peng S, Rong C, Liu J, Sun S. A facile synthesis of SmCo5 magnets from core/shell Co/Sm2O3 nanoparticles. Adv Mater. 2007;19(20):3349.

    Article  CAS  Google Scholar 

  25. Chaubey GS, Poudyal N, Liu Y, Rong C, Liu JP. Synthesis of Sm–Co and Sm–Co/Fe nanocrystals by reductive annealing of nanoparticles. J Alloys Compd. 2011;509(5):2132.

    Article  CAS  Google Scholar 

  26. Suresh G, Saravanan P, Rajan Babu D. Effect of annealing on phase composition, structural and magnetic properties of Sm–Co based nanomagnetic material synthesized by sol–gel process. J Magn Magn Mater. 2012;324(324):2158.

    Article  CAS  Google Scholar 

  27. Ma ZH, Zhang TL, Jiang CB. A facile synthesis of high performance SmCo5 nanoparticles. Chem Eng J. 2015;264:610.

    Article  CAS  Google Scholar 

  28. Hou YL, Sun SH. SmCo5/Fe nanocomposites synthesized from reductive annealing of oxide nanoparticles. Appl Phys Lett. 2007;91(15):153117.

    Article  Google Scholar 

  29. Yang C, Jia L, Wang S, Gao C, Shi DW, Hou YL, Gao S. Single domain SmCo5@Co exchange-coupled magnets prepared from core/shell Sm[Co(CN)6]·4H2O@GO particles: a novel chemical approach. Sci Rep. 2013;3:354.

    Google Scholar 

  30. Zhang H, Peng S, Rong C, Liu J, Zhang Y, Kramer M, Sun S. Chemical synthesis of hard magnetic SmCo nanoparticles. J Mater Chem. 2011;21(42):16873.

    Article  CAS  Google Scholar 

  31. Ma ZH, Zhang TL, Jiang CB. Exchange-coupled SmCo5/Co nanocomposites synthesized by a novel strategy. RSC Adv. 2015;5(108):89128.

    Article  CAS  Google Scholar 

  32. Wang Y, Li Y, Rong C, Liu J. Sm–Co hard nanoparticles prepared by surfactant-assisted ball milling. Nanotechnology. 2007;18(46):465701.

    Article  Google Scholar 

  33. Yue M, Zuo JH, Liu WQ, Lv WC, Zhang DT, Zhang JX, Guo ZH, Li W. Magnetic anisotropy in bulk nanocrystalline SmCo5 permanent magnet prepared by hot deformation. J Appl Phys. 2011;109(7):07A711.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundations of China (Nos. 51471016 and 51520105002) and the Key Natural Science Foundation of Beijing (No. 2151002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, ZH., Zhang, TL., Wang, H. et al. Synthesis of SmCo5 nanoparticles with small size and high performance by hydrogenation technique. Rare Met. 37, 1021–1026 (2018). https://doi.org/10.1007/s12598-016-0873-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0873-6

Keywords

Navigation