Skip to main content
Log in

Microstructural evolution and age-hardening behavior of quasicrystal-reinforced Mg–Dy–Zn alloy

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Microstructural evolution and age-hardening behavior of Mg–2Dy–6Zn (at%) alloy during solid-solution and aging treatment were investigated. The microstructure of as-cast alloy is composed of α-Mg, Mg3DyZn6 (I) phase, Mg3Dy2Zn3 (W) phase, Mg(Zn,Dy) phase and a small amount of Mg0.97Zn0.03 phases. After solid-solution treatment (480 °C, 12 h), all the I phases and most W phases dissolve into α-Mg matrix and the remainder W phases transform into Mg(Dy,Zn) phase and MgDy3 phase. During aging treatment, I phase and small amounts of W phases co-precipitate from α-Mg matrix, respectively. The alloy exhibits a peak hardness of HV 77.5 at 200 °C for 8 h. The excellent age-hardening behavior of alloy is mainly attributed to the co-precipitation strengthening of I and W phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen TJ, Zhang DH, Wang W, Ma Y, Hao Y. Effects of Zn content on microstructures and mechanical properties of Mg–Zn–RE–Sn–Zr–Ca alloys. Mater Sci Eng A. 2014;607:17.

    Article  Google Scholar 

  2. Liu W, Yang DD, Quan GF, Zhang YB, Yao DD. Microtructure evolution of semisolid Mg–2Zn–0.5Y alloy during isothermal heat treatment. Rare Met Mater Eng. 2016;45(8):1967.

    Article  Google Scholar 

  3. Bi GL, Li YD, Huang XF, Chen TJ, Lian JS, Jiang ZH, Ma Y, Hao Y. Deformation behavior of an extruded Mg–Dy–Zn alloy with long period stacking ordered phase. Mater Sci Eng A. 2015;622:52.

    Article  Google Scholar 

  4. Chen TJ, Zhang DH, Wang W, Ma Y, Hao Y. Effects of Nd or Zr addition on microstructure and mechanical properties of As-Cast Mg–Zn–Y Alloy. Mater Trans. 2016;57(8):1287.

    Article  Google Scholar 

  5. Liu H, Xue F, Bai J, Zhou J, Sun YS. Effect of heat treatments on microstructures and precipitation behaviour of Mg94Y4Zn2 extruded alloy. J Mater Sci Technol. 2014;30(2):128.

    Article  Google Scholar 

  6. Chen TJ, Zhang DH, Wang W, Ma Y, Hao Y. Effects of Y content on microstructures and mechanical properties of as-cast Mg–Zn–Nd alloys. China Foundry. 2015;12(5):339.

    Google Scholar 

  7. Wang QF, Du WB, Liu K, Wang ZH, Li SB. Effect of Zn addition on microstructure and mechanical properties of as-cast Mg–2Er alloy. Trans Nonferrous Met Soc China. 2014;24(12):3792.

    Article  Google Scholar 

  8. Sasaki TT, Oh-lshi K, Ohkubo T, Hono K. Enhanced age hardening response by the addition of Zn in Mg–Sn alloys. Scripta Mater. 2006;55(3):251.

    Article  Google Scholar 

  9. Luo ZP, Zhang SQ, Tang YL, Zhao DS. On the stable quasicrystals in slowly cooled Mg–Zn–Y alloys. Scripta Mater. 1995;32(9):1411.

    Article  Google Scholar 

  10. Fang XG, Wu SS, Lv SL, Wang J, Yang X. Microtructure evolution and mechanical properties of quasicrystal-reinforced Mg–Zn–Y alloy subjected to ultrasonic vibration. Mater Sci Eng A. 2017;679:372.

    Article  Google Scholar 

  11. Geng JW, Teng XY, Zhou GR, Zhao DG. Microstructure transformations in the heat-treated Mg–Zn–Y alloy. J Alloys Compd. 2013;577(11):498.

    Article  Google Scholar 

  12. Yan BS, Dong XQ, Ma R, Chen SQ, Pan Z, Ling HJ. Effects of heat treatment on microstructure, mechanical properties and damping capacity of Mg–Zn–Y–Zr alloy. Mater Sci Eng A. 2014;594:168.

    Article  Google Scholar 

  13. Bae DH, Kim SH, Kim WT, Kim DH. High strength Mg–Zn–Y alloy containing quasicrystalline particles. Mater Trans. 2005;42(10):2144.

    Article  Google Scholar 

  14. Singh A, Watanabe M, Kato A, Tsai AP. Microstructure and strength of quasicrystal containing extruded Mg–Zn–Y alloys for elevated temperature application. Mater Sci Eng A. 2004;385(1–2):382.

    Article  Google Scholar 

  15. Kim YK, Sohn SW, Kim DH, Kim WT, Kin DH. Role of icosahedral phase in enhancing the strength of Mg–Sn–Zn–Al alloy. J Alloys Compd. 2013;549(2):46.

    Article  Google Scholar 

  16. Huang H, Tian Y, Yuan GY, Chen CL, Wang ZC, Ding WJ, Inoue A. Secondary phases in quasicrystal-reinforced Mg–3.5Zn–0.6Gd Mg alloy. Mater Charact. 2015;108:132.

    Article  Google Scholar 

  17. Liu JF, Yang ZQ, Ye HQ. Solid-state formation of icosahedral quasicrystals at Zn3Mg3Y2/Mg interfaces in a Mg–Zn–Y alloy. J Alloys Compd. 2015;650:65.

    Article  Google Scholar 

  18. Schaefer RJ, Bendersky L. Replacement of icosahedral Al–Mn by decagonal phase. Scripta Mater. 1986;20(5):745.

    Article  Google Scholar 

  19. Liu BS, Li HX, Ren YP, Jiang M, Qin GW. Phase equilibria of low-Y side in Mg–Zn–Y system at 400 °C. Rare Met. 2018. https://doi.org/10.1007/s12598-018-1024-z.

    Google Scholar 

  20. Liu JF, Yang ZQ, Ye HQ. In situ transmission electron microscopy investigation of quasicrystal transformations in Mg–Zn–Y alloy. J Alloys Compd. 2015;621:179.

    Article  Google Scholar 

  21. Liu JX, Barmak K. Topologically close-packed phases deposition and formation mechanism of metastable β-W in thin films. Acta Mater. 2016;104(1128):223.

    Article  Google Scholar 

  22. Jiang HS, Qiao XG, Xu C, Zheng MY, Wu K, Kamado S. Ultrahigh strength as-extruded Mg–10.3Zn–6.4Y–0.4Zr–0.5Ca alloy containing W phase. Mater Design. 2016;108:391.

    Article  Google Scholar 

  23. Zou GD, Cai XC, Fang DQ, Wang Z, Zhao TS, Peng QM. Age strengthening behavior and mechanical properties of Mg–Dy based alloys containing LPSO phases. Mater Sci Eng A. 2015;620:10.

    Article  Google Scholar 

  24. Bi GL, Fang DQ, Zhao L, Zhang QX, Lian JS, Jiang Q, Jiang ZH. Double-peak ageing behavior of Mg–2Dy–0.5Zn alloy. J Alloys Compd. 2011;509(32):8268.

    Article  Google Scholar 

  25. Jiang J, Bi GL, Liu JA, Ye CC, Lian JS, Jiang ZH. Microstructures and mechanical properties of extruded Mg–2Sn–xYb (x = 0, 0.1, 0.5 at%) sheets. J Alloys Compd. 2014;2(3):257.

    Article  Google Scholar 

  26. Wei GB, Peng XD, Zhang B, Hadadzadeh A, Xu TC, Xie WD. Influence of I-phase and W-phase on microstructure and mechanical properties of Mg–8Li–3Zn alloy. Trans Nonferrous Met Soc China. 2015;25(3):713.

    Article  Google Scholar 

  27. Liu K, Zhang JH, Lu HY, Tang DX, Rokhlin LL, Elkin FM, Meng J. Effect of the long periodic stacking structure and W-phase on the microstructures and mechanical properties of the Mg–8Gd–xZn–0.4Zr alloys. Mater Des. 2010;31(1):210.

    Article  Google Scholar 

  28. Ying T, Zheng MY, Li ZT, Qiao XG, Xu SW. Thermal conductivity of as-cast and as-extruded binary Mg–Zn alloys. J Alloys Compd. 2014;608(38):19.

    Article  Google Scholar 

  29. Zhang L, Zhang JH, Xu C, Liu SJ, Jiao YF, Xu LJ, Wang Y, Meng J, Wu RZ, Zhang ML. Investigation of high-strength and superplastic Mg–Y–Gd–Zn alloy. Mater Des. 2014;61(9):168.

    Google Scholar 

  30. Buha J. Grain refinement and improved age hardening of Mg–Zn alloy by a trace amount of V. Acta Mater. 2008;56(14):3533.

    Article  Google Scholar 

  31. StJohn DH, Qian M, Easton MA, Cao P, Hildebrand Z. Grain refinement of magnesium alloy. Metall Mater Trans A. 2005;36(5):1669.

    Article  Google Scholar 

  32. Ren LB, Quan GF, Zhou MY, Guo YY, Jiang ZZ, Tang Q. Effect of Y addition on the aging hardening behavior and precipitation evolution of extruded Mg–Al–Zn alloys. Mater Sci Eng A. 2017;690:195.

    Article  Google Scholar 

  33. Zheng JX, Chen B. Interactions between long-period stacking ordered phase and β′ precipitate in Mg–Gd–Y–Zn–Zr alloy: atomic-scale insights from HAADF-STEM. Mater Lett. 2016;176:223.

    Article  Google Scholar 

  34. Liu K, Sun CC, Wang ZH, Li SB, Wang QF, Du WB. Microstructure, texture and mechanical properties of Mg–Zn–Er alloys containing I-phase and W-phase simultaneously. J Alloys Compd. 2016;665:76.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51301082 and 51464031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Li Bi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, GL., Han, YX., Jiang, J. et al. Microstructural evolution and age-hardening behavior of quasicrystal-reinforced Mg–Dy–Zn alloy. Rare Met. 38, 739–745 (2019). https://doi.org/10.1007/s12598-018-1089-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1089-8

Keywords

Navigation