Skip to main content

Advertisement

Log in

Design and fabrication of a low modulus β-type Ti–Nb–Zr alloy by controlling martensitic transformation

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this paper, high density of dislocations, grain boundaries and nanometer-scale α precipitates were introduced to a metastable Ti–36Nb–5Zr alloy (wt%) through a thermo-mechanical approach including severe cold rolling and short-time annealing treatment. The martensitic transformation was retarded, and the β phase with low content of β stabilizers was retained at room temperature after the thermo-mechanical treatment. As a result, both low modulus (57 GPa) and high strength (950 MPa) are obtained. The results indicate that it is a feasible strategy to control martensitic transformation start temperature through microstructure optimization instead of composition design, with the aim of fabricating low modulus β-type Ti alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci. 2009;54(3):397.

    Article  Google Scholar 

  2. Long M, Rack HJ. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials. 1998;19(18):1621.

    Article  Google Scholar 

  3. Chen Q, Thouas GA. Metallic implant biomaterials. Mater Sci Eng R. 2015;87:1.

    Article  Google Scholar 

  4. Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater. 2008;1(1):30.

    Article  Google Scholar 

  5. Biesiekierski A, Wang J, Abdel-Hady Gepreel M, Wen C. A new look at biomedical Ti-based shape memory alloys. Acta Biomater. 2012;8(5):1661.

    Article  Google Scholar 

  6. Saito T, Furuta T, Hwang J-H, Kuramoto S, Nishino K, Suzuki N, Chen R, Yamada A, Ito K, Seno Y, Nonaka T, Ikehata H, Nagasako N, Iwamoto C, Ikuhara Y, Sakum T. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science. 2003;300(5618):464.

    Article  Google Scholar 

  7. Hao YL, Zhang ZB, Li SJ, Yang R. Microstructure and mechanical behavior of a Ti–24Nb–4Zr–8Sn alloy processed by warm swaging and warm rolling. Acta Mater. 2012;60(5):2169.

    Article  Google Scholar 

  8. Jin M, Lu X, Qiao Y, Wang LN, Volinsky AA. Fabrication and characterization of anodic oxide nanotubes on TiNb alloys. Rare Met. 2016;35(2):140.

    Article  Google Scholar 

  9. Qu WT, Sun XG, Yuan BF, Li KM, Wang ZG, Li Y. Tribological behaviour of biomedical Ti–Zr-based shape memory alloys. Rare Met. 2017;36(6):478.

    Article  Google Scholar 

  10. Abdel-Hady M, Hinoshita K, Morinaga M. General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters. Scr Mater. 2006;55(5):477.

    Article  Google Scholar 

  11. Banerjee D, Williams JC. Perspectives on titanium science and technology. Acta Mater. 2013;61(3):844.

    Article  Google Scholar 

  12. Guo S, Meng Q, Zhao X, Wei Q, Xu H. Design and fabrication of a metastable β-type titanium alloy with ultralow elastic modulus and high strength. Sci Rep. 2015;5:14688.

    Article  Google Scholar 

  13. Hu L, Guo S, Meng QK, Zhao XQ. Metastable β-type Ti–30Nb–1Mo–4Sn alloy with ultralow Young’s modulus and high strength. Metall Mater Trans A. 2014;45(2):547.

    Article  Google Scholar 

  14. Hao YL, Li SJ, Sun SY, Zheng CY, Yang R. Elastic deformation behaviour of Ti–24Nb–4Zr–7.9Sn for biomedical applications. Acta Biomater. 2007;3(2):277.

    Article  Google Scholar 

  15. Yu ZG, Xiong CY, Xue PF, Li Y, Yuan BF, Qu WT. Shape memory behavior of Ti–20Zr–10Nb–5Al alloy subjected to annealing treatment. Rare Met. 2016;35(11):831.

    Article  Google Scholar 

  16. Sun F, Nowak S, Gloriant T, Laheurte P, Eberhardt A, Prima F. Influence of a short thermal treatment on the superelastic properties of a titanium-based alloy. Scr Mater. 2010;63(11):1053.

    Article  Google Scholar 

  17. Niinomi M. Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti–29Nb–13Ta–4.6Zr. Biomaterials. 2003;24(16):2673.

    Article  Google Scholar 

  18. Hao YL, Wang HL, Li T, Cairney JM, Ceguerra AV, Wang YD, Wang Y, Wang D, Obbard EG, Li SJ, Yang R. Superelasticity and tunable thermal expansion across a wide temperature range. J Mater Sci Technol. 2016;32(8):705.

    Article  Google Scholar 

  19. Wang HL, Hao YL, He SY, Du K, Li T, Obbard EG, Hudspeth J, Wang JG, Wang YD, Wang Y, Prima F, Lu N, Kim MJ, Cairney JM, Li SJ, Yang R. Tracing the coupled atomic shear and shuffle for a cubic to a hexagonal crystal transition. Scr Mater. 2017;133:70.

    Article  Google Scholar 

  20. Xu W, Wu X, Calin M, Stoica M, Eckert J, Xia K. Formation of an ultrafine-grained structure during equal-channel angular pressing of a β-titanium alloy with low phase stability. Scr Mater. 2009;60(11):1012.

    Article  Google Scholar 

  21. Cai MH, Lee CY, Kang S, Lee YK. Fine-grained structure fabricated by strain-induced martensite and its reverse transformations in a metastable β titanium alloy. Scr Mater. 2011;64(12):1098.

    Article  Google Scholar 

  22. Nag S, Banerjee R, Srinivasan R, Hwang JY, Harper M, Fraser HL. ω-Assisted nucleation and growth of α precipitates in the Ti–5Al–5Mo–5V–3Cr–0.5Fe β titanium alloy. Acta Mater. 2009;57(7):2136.

    Article  Google Scholar 

  23. Otsuka K, Ren X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci. 2005;50(5):511.

    Article  Google Scholar 

  24. Hao YL, Li SJ, Sun SY, Yang R. Effect of Zr and Sn on Young’s modulus and superelasticity of Ti–Nb-based alloys. Mater Sci Eng A. 2006;441(1–2):112.

    Article  Google Scholar 

  25. Inamura T, Fukui Y, Hosoda H, Wakashima K, Miyazaki S. Mechanical properties of Ti–Nb biomedical shape memory alloys containing Ge or Ga. Mater Sci Eng C. 2005;25(3):426.

    Article  Google Scholar 

  26. Tane M, Akita S, Nakano T, Hagihara K, Umakoshi Y, Niinomi M, Mori H, Nakajima H. Low Young’s modulus of Ti–Nb–Ta–Zr alloys caused by softening in shear moduli c′ and c44 near lower limit of body-centered cubic phase stability. Acta Mater. 2010;58(20):6790.

    Article  Google Scholar 

  27. Bertrand E, Castany P, Gloriant T. Investigation of the martensitic transformation and the damping behavior of a superelastic Ti–Ta–Nb alloy. Acta Mater. 2013;61(2):511.

    Article  Google Scholar 

  28. Matsumoto H, Watanabe S, Hanada S. Microstructures and mechanical properties of metastable β TiNbSn alloys cold rolled and heat treated. J Alloys Compd. 2007;39(1–2):146.

    Article  Google Scholar 

  29. Sun F, Hao YL, Nowak S, Gloriant T, Laheurte P, Prima F. A thermo-mechanical treatment to improve the superelastic performances of biomedical Ti–26Nb and Ti–20Nb–6Zr (at.%) alloys. J Mech Behav Biomed Mater. 2011;4(8):1864.

    Article  Google Scholar 

  30. Hao YL, Li SJ, Yang R. Biomedical titanium alloys and their additive manufacturing. Rare Met. 2016;35(9):661.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51601217), the Natural Science Foundation of Jiangsu Province (No. BK20160255) and the Fundamental Research Funds for the Central Universities (No. 2017QNA04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, QK., Huo, YF., Ma, W. et al. Design and fabrication of a low modulus β-type Ti–Nb–Zr alloy by controlling martensitic transformation. Rare Met. 37, 789–794 (2018). https://doi.org/10.1007/s12598-018-1055-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1055-5

Keywords

Navigation