Skip to main content

Advertisement

Log in

Metastable β-type Ti-30Nb-1Mo-4Sn Alloy with Ultralow Young’s Modulus and High Strength

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of thermo-mechanical treatment on the mechanical properties of a novel metastable β-type Ti-30Nb-1Mo-4Sn (wt pct) alloy has been investigated. The solution-treated alloy consists of β and α″ phases and exhibits a two-stage yielding with a low yield stress (around 100 MPa). After cold rolling at a reduction of 87.5 pct and subsequent annealing treat at 623 K (350 °C) for 30 minutes, a fine microstructure with nano-sized α precipitates distributed in small β grains as well as high density of dislocations was obtained to achieve a yield strength of 954 MPa and an ultimate tensile strength of 999 MPa. With low stability of β phase and small volume fraction of α precipitates, the annealed specimen exhibits a low Young’s modulus of 45 GPa. Such an excellent combination of the low elastic modulus and high strength in mechanical properties indicates a great potential candidate for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia: Prog. Mater. Sci., 2008, vol. 54, pp. 397-425.

    Article  Google Scholar 

  2. M. Long, and H.J. Rack: Biomaterials, 1998, vol. 19, pp. 1621-39.

    Article  Google Scholar 

  3. M. Tane, S. Akita, T. Nakano, K. Hagihara, Y. Umakoshi, and M. Niinomi: Acta. Mater., 2008, vol. 56, pp. 2856-63.

    Article  Google Scholar 

  4. T. Saito, T. Furuta, J. Hwang, S. Kuramoto, K. Nishino, N. Suzuki, R. Chen, A. Yamada, K. Ito, Y. Seno, T. Nonaka, H. Ikehata, N. Nagasako, C. Iwamoto, Y. Ikuhara, and T. Sakuma, Science, 2003, vol. 300, pp. 464–67.

    Article  Google Scholar 

  5. H. Ikehata, N. Nagasako, T. Furuta, A. Fukumoto, K. Miwa, and T. Saito: Phys. Rev. B, 2004, vol. 70, pp. 174113-1—174113-8.

    Article  Google Scholar 

  6. H.Y. Kim, H. Satoru, J.I. Kim, H. Hosoda, and S. Miyazaki: Mater. Trans. 2004, vol. 45-7, pp. 2443-48.

    Article  Google Scholar 

  7. Y.L. Zhou, M. Niinomi, and T. Akahori: Mater. Sci. Eng. A, 2004, vol. 371, pp. 283-90.

    Article  Google Scholar 

  8. L.A. Matlakhova, A.N. Matlakhova, S.N. Monteiro, S.G. Fedotov, and B.A. Goncharenko: Mater. Sci. Eng. A, 2005, vol. 393, pp. 320-26.

    Article  Google Scholar 

  9. E.W. Collings: The Physical Metallurgy of Titanium Alloys, American Society for Metals, Metal Park, OH, 1984, p. 115.

    Google Scholar 

  10. T. Ozaki, H. Matsumoto, S. Watanabe and S. Hanada: Metall. Trans., 2004, vol. 45-8, pp. 2776-79.

    Google Scholar 

  11. A.H. Mohamed, K. Hinoshita, and M. Morinaga: Scripta. Mater., 2006, vol. 55, pp. 477-80.

    Article  Google Scholar 

  12. E.W. Collings: Applied Superconductivity, Metallurgy, and Physics of Titanium Alloys, vol. 1, 1st ed., Plenum Press, New York, 1986, p. 192.

  13. E. Sukedai, H. Matsumoto, and H. Hashimoto: J. Electron Microsc., 2002, vol. 51, pp. 143-47.

    Article  Google Scholar 

  14. Y.L. Hao, M. Niinomi, D. Kuroda, K. Fukunaga, Y.L. Zhou, R. Yang, and A. Suzuki: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1007-12.

    Article  Google Scholar 

  15. Y.L. Hao, M. Niinomi, D. Kuroda, K. Fukunaga, Y.L. Zhou, R. Yang, and A. Suzuki: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 3138-44.

    Google Scholar 

  16. J. Hwang, S. Kuramoto, T. Furuta, K. Nishino, and T. Saito: J. Mater. Eng. Perform., 2005, vol.14-6, pp. 747-54.

    Article  Google Scholar 

  17. H. Matsumoto, S. Watanabe, and S. Hanada: Mater. Trans., 2005, vol.46-5, pp. 1070-78.

    Article  Google Scholar 

  18. S. Nag, R. Banerjee, R. Srinivasan, J.Y. Hwang, M. Harper, and H.L. Fraser: Acta Mater., 2009, vol. 57, pp. 2136-47.

    Article  Google Scholar 

  19. Y.W. Chai, H.Y. Kim, H. Hosoda, and S. Miyazaki: Acta Mater., 2008, vol. 56, pp. 3088-97.

    Article  Google Scholar 

  20. T. Inamura, Y. Fukui, H. Hosoda, K. Wakashima, and S. Miyazaki: Mater. Sci. Eng. C, 2005, vol. 25, pp. 426-32.

    Article  Google Scholar 

  21. S. Sarkar, X.B. Ren, and K. Otsuka: Phys. Rev. B, 2005, vol. 95, pp. 205702-05.

    Google Scholar 

  22. M. Niinomi: Mater. Sci. Eng. A, 1998, vol. 243, pp. 231-36.

    Article  Google Scholar 

  23. Y.L. Zhou, M. Niinomi, and T. Akahori: Mater. Sci. Eng. A, 2004, vol. 384, pp. 92–101.

    Article  Google Scholar 

Download references

This work was supported by the National Natural Science Foundation of China (No. 51271010 and No. 51221163) and the National 973 Program of China (No. 2012CB619403).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinqing Zhao.

Additional information

Manuscript submitted October 3, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, L., Guo, S., Meng, Q. et al. Metastable β-type Ti-30Nb-1Mo-4Sn Alloy with Ultralow Young’s Modulus and High Strength. Metall Mater Trans A 45, 547–550 (2014). https://doi.org/10.1007/s11661-013-2134-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2134-8

Keywords

Navigation