Skip to main content
Log in

Characterization of semisolid deformation behavior of a high Zr-containing WE magnesium alloy

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The effects of temperature and strain rate on the semisolid deformation behavior of a high Zr WE54 magnesium alloys were studied at temperatures of 570, 595 and 620 °C. A flow stress peak was appeared during deformation of the feedstock experimental material at deformation conditions of 570 °C, 0.010 and 0.100 s−1, and 595 °C, 0.100 s−1. The latter results were connected to the occurrence of dynamic recrystallization in solid globules. Also, these conditions were gauged to be able to activate “lubricated flow” mechanism. At 570 °C and strain rate of 0.001 s−1 as well as 595 °C and rates of 0.010 and 0.001 s−1, the flow stress increases and reaches a plateau, where dynamic recovery is considered as the dominant mechanism. However, at 620 °C under all the strain rates, the flow stress drops for a limited strain range and then increases again. The results show that as the liquid removes from the boundaries between the solid parts, the densification of the globules occurs at higher strains, causing an increase in the flow stress. Comparative analysis points out that the feedstock material exhibits a lower flow stress than as-cast alloy associating with a modified morphology of Zr particles after deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Liu X, Zhang Z, Hu W, Le Q, Bao L, Cui J. Effects of extrusion speed on the microstructure and mechanical properties of Mg9Gd3Y1.5Zn0.8Zr alloy. J Mater Sci Technol. 2016;32(4):313.

    Article  CAS  Google Scholar 

  2. Liu H, Xue F, Bai J, Ma A, Jiang J. Formation behavior of 14H long period stacking ordered structure in Mg–Y–Zn cast alloys with different α-Mg fractions. J Mater Sci Technol. 2016;32(12):1267.

    Article  CAS  Google Scholar 

  3. Liu L, Chen X, Pan F, Gao S, Zhao C. A new high-strength Mg–Zn–Ce–Y–Zr magnesium alloy. J Alloy Compd. 2016;688(1):537.

    Article  CAS  Google Scholar 

  4. Cheng K, Zhou H, Du Y, Liu S, Xu H. Experimental investigation and thermodynamic description of the Mg–Y–Zr system. J Mater Sci. 2014;49(20):7124.

    Article  CAS  Google Scholar 

  5. Kleiner S, Beffort O, Uggowitzer PJ. Microstructure evolution during reheating of an extruded Mg–Al–Zn alloy into the semisolid state. Scripta Mater. 2004;51(5):405.

    Article  CAS  Google Scholar 

  6. Tahreen N, Chen DL, Nouri M, Li DY. Influence of aluminum content on twinning and texture development of cast Mg–Al–Zn alloy during compression. J Alloy Compd. 2015;623(1):15.

    Article  CAS  Google Scholar 

  7. Wang C, Wu G, Lavernia EJ, Ding W. Influences of heat treatment on microstructural evolution and tensile behavior of squeeze-cast Mg–Gd–Y–Zr alloy. J Mater Sci. 2017;52(4):1831.

    Article  CAS  Google Scholar 

  8. Zhang L, Cao ZY, Liu YB. Microstructure evolution of semi-solid Mg–14Al–0.5Mn alloys during isothermal heat treatment. Trans Nonferrous Metals Soc China. 2010;20(7):1244.

    Article  CAS  Google Scholar 

  9. Xu HY, Ji ZS, Hu ML, Wang ZY. Microstructure evolution of hot pressed AZ91D alloy chips reheated to semi-solid state. Trans Nonferrous Metals Soc China. 2012;22(12):2906.

    Article  CAS  Google Scholar 

  10. Yu Z, Huang Y, Gan W, Zhong Z, Hort N, Meng J. Effects of extrusion ratio and annealing treatment on the mechanical properties and microstructure of a Mg–11Gd–4.5Y–1Nd–1.5Zn–0.5Zr (wt%) alloy. J Mater Sci. 2017;52(11):6670.

    Article  CAS  Google Scholar 

  11. Alizadeh R, Mahmudi R, Ngan AHW, Langdon TG. Microstructural evolution during hot shear deformation of an extruded fine-grained Mg–Gd–Y–Zr alloy. J Mater Sci. 2017;52(13):7843.

    Article  CAS  Google Scholar 

  12. Asqardoust S, Zarei-Hanzaki A, Fatemi SM, Moradjoy-Hamedani M. High temperature deformation behavior and microstructural evolutions of a high Zr containing WE magnesium alloy. J Alloy Compd. 2016;669:108.

    Article  CAS  Google Scholar 

  13. Máthis K, Nyilas K, Axt A, Dragomir-Cernatescu I, Ungár T, Lukáč P. The evolution of non-basal dislocations as a function of deformation temperature in pure magnesium determined by X-ray diffraction. Acta Mater. 2004;52(10):2889.

    Article  Google Scholar 

  14. Zhang W, Xiao W, Wang F, Ma C. Development of heat resistant Mg–Zn–Al-based magnesium alloys by addition of La and Ca: microstructure and tensile properties. J Alloy Compd. 2016;684(1):8.

    Article  CAS  Google Scholar 

  15. Steglich D, Jeong Y, Andar MO, Kuwabara T. Biaxial deformation behaviour of AZ31 magnesium alloy: crystal-plasticity-based prediction and experimental validation. Int J Solids Struct. 2012;49(25):3551.

    Article  CAS  Google Scholar 

  16. Wang H, Wu PD, Tomé CN, Wang J. Study of lattice strains in magnesium alloy AZ31 based on a large strain elastic-viscoplastic self-consistent polycrystal model. Int J Solids Struct. 2012;49(15–16):2155.

    Article  CAS  Google Scholar 

  17. Chayong S, Atkinson HV, Kapranos P. Thixoforming 7075 aluminium alloys. Mater Sci Eng, A. 2005;390(1–2):3.

    Article  Google Scholar 

  18. Fadavi Boostani A, Tahamtan S. Effect of a novel thixoforming process on the microstructure and fracture behavior of A356 aluminum alloy. Mater Des. 2010;31(8):3769.

    Article  CAS  Google Scholar 

  19. Chen Q, Chen G, Han L, Hu N, Han F, Zhao Z, Xia X, Wan Y. Microstructure evolution of SiCp/ZM6 (Mg–Nd–Zn) magnesium matrix composite in the semi-solid state. J Alloy Compd. 2016;656(1):67.

    Article  CAS  Google Scholar 

  20. Fan Z. Semisolid metal processing. Int Mater Rev. 2013;47(2):49.

    Article  Google Scholar 

  21. Haitao J, Yalin L, Weichao H, Xiaoli L, Miaoquan L. Microstructural evolution and mechanical properties of the semisolid Al–4Cu–Mg alloy. Mater Charact. 2003;51(1):1.

    Article  Google Scholar 

  22. Birol Y. Thixoforming of EN AW-2014 alloy at high solid fraction. J Mater Process Technol. 2011;211(11):1749.

    Article  CAS  Google Scholar 

  23. Rogal Ł, Dutkiewicz J, Atkinson HV, Lityńska-Dobrzyńska L, Czeppe T, Modigell M. Characterization of semi-solid processing of aluminium alloy 7075 with Sc and Zr additions. Mater Sci Eng, A. 2013;580(1):362.

    Article  CAS  Google Scholar 

  24. Birol Y. Semi-solid processing of the primary aluminium die casting alloy A365. J Alloy Compd. 2009;473(1–2):133.

    Article  CAS  Google Scholar 

  25. Birol Y. Thermomechanical processing of an aluminium casting alloy for thixoforming. J Alloy Compd. 2009;479(1–2):113.

    Article  CAS  Google Scholar 

  26. Meng Y, Sugiyama S, Yanagimoto J. Microstructural evolution during RAP process and deformation behavior of semi-solid SKD61 tool steel. J Mater Process Technol. 2012;212(8):1731.

    Article  CAS  Google Scholar 

  27. Birol Y. Comparison of thixoformability of AA6082 reheated from the as-cast and extruded states. J Alloy Compd. 2008;461(1–2):132.

    Article  CAS  Google Scholar 

  28. Bolouri A, Kang CG. Characteristics of thixoformed A356 aluminum thin plates with microchannels. Mater Charact. 2013;82(1):86.

    Article  CAS  Google Scholar 

  29. Salleh MS, Omar MZ, Syarif J, Alhawari KS, Mohammed MN. Microstructure and mechanical properties of thixoformed A319 aluminium alloy. Mater Des. 2014;64(1):142.

    Article  CAS  Google Scholar 

  30. Haitao J, Miaoquan L. Effects of isothermal heat treatment on microstructural evolution of semisolid Al–4Cu–Mg alloy. J Mater Eng Perform. 2004;13(4):488.

    Article  Google Scholar 

  31. Liu D, Atkinson HV, Kapranos P, Jirattiticharoean W, Jones H. Microstructural evolution and tensile mechanical properties of thixoformed high performance aluminium alloys. Mater Sci Eng, A. 2003;361(1–2):213.

    Article  Google Scholar 

  32. Bolouri A, Shahmiri M, Kang CG. Study on the effects of the compression ratio and mushy zone heating on the thixotropic microstructure of AA 7075 aluminum alloy via SIMA process. J Alloy Compd. 2011;509(2):402.

    Article  CAS  Google Scholar 

  33. Sirong Yu, Dongcheng Li, Kim N. Microstructure evolution of SIMA processed Al2024. Mater Sci Eng, A. 2006;420(1–2):165.

    Article  Google Scholar 

  34. Bolouri A, Shahmiri M, Cheshmeh ENH. Microstructural evolution during semisolid state strain induced melt activation process of aluminum 7075 alloy. Trans Nonferrous Metals Soc China. 2010;20(9):1663.

    Article  CAS  Google Scholar 

  35. Wang LP, Jiang WY, Chen T, Feng YC, Zhou HY, Zhao SC, Liang ZQ, Zhu Y. Spheroidal microstructure formation and thixoforming of AM60B magnesium alloy prepared by SIMA process. Trans Nonferrous Metals Soc China. 2012;22(1):s435.

    Article  CAS  Google Scholar 

  36. Yang MB, Pan FS, Cheng RJ, Shen J. Effects of holding temperature and time on semi-solid isothermal heat-treated microstructure of ZA84 magnesium alloy. Trans Nonferrous Metals Soc China. 2008;18(3):566.

    Article  CAS  Google Scholar 

  37. Zhao GZ, Yang L, Duan XX, Ren XH, Zhu LM, Yang TJ, Guo XY, Hao SN. Microstructure evolution and mechanical properties of AZ80 alloy reheated from as-cast and deformed states. Trans Nonferrous Metals Soc China. 2012;22(1):s450.

    Article  CAS  Google Scholar 

  38. Hu XG, Zhu Q, Lu HX, Zhang F, Li DQ, Midson SP. Microstructural evolution and thixoformability of semi-solid aluminum 319s alloy during re-melting. J Alloy Compd. 2015;649(1):204.

    Article  CAS  Google Scholar 

  39. Zhao Z, Chen Q, Kang F, Shu D. Microstructural evolution and tensile mechanical properties of thixoformed AZ91D magnesium alloy with the addition of yttrium. J Alloy Compd. 2009;482(1–2):455.

    Article  CAS  Google Scholar 

  40. Lentz M, Gall S, Schmack F, Mayer HM, Reimers W. Hot working behavior of a WE54 magnesium alloy. J Mater Sci. 2013;49(3):1121.

    Article  Google Scholar 

  41. Liu ZJ, Wu GH, Liu WC, Pang S, Ding WJ. Effect of heat treatment on microstructures and mechanical properties of sand-cast Mg–4Y–2Nd–1Gd–0.4Zr magnesium alloy. Trans Nonferrous Metals Soc China. 2012;22(7):1540.

    Article  CAS  Google Scholar 

  42. Ma M, He L, Li X, Li Y, Zhang K. Hot workability of Mg–9Y–1MM–0.6Zr alloy. J Rare Earths. 2011;29(5):460.

    Article  CAS  Google Scholar 

  43. Stanford N. The effect of rare earth elements on the behaviour of magnesium-based alloys: part 2—recrystallisation and texture development. Mater Sci Eng, A. 2013;565(1):469.

    Article  CAS  Google Scholar 

  44. Beladi H, Barnett MR. Influence of aging pre-treatment on the compressive deformation of WE54 alloy. Mater Sci Eng, A. 2007;452–453(1):306.

    Article  Google Scholar 

  45. Li J, Chen R, Ma Y, Ke W. Effect of Zr modification on solidification behavior and mechanical properties of Mg–Y–RE (WE54) alloy. J Magnes Alloys. 2013;1(4):346.

    Article  CAS  Google Scholar 

  46. Moradjoy-Hamedani M, Zarei-Hanzaki A, Fatemi SM, Asqardoust S. The microstructure evolution of a high Zr-containing WE magnesium alloy through isothermal semi-solid treatment. Adv Eng Mater. 2015;17(11):1623.

    Article  CAS  Google Scholar 

  47. Zhao C, Song R. Evolution of microstructure and mechanical properties for 9Cr18 stainless steel during thixoforming. Mater Des. 2014;59(1):502.

    Article  CAS  Google Scholar 

  48. Atkinson HV, Liu D. Microstructural coarsening of semi-solid aluminium alloys. Mater Sci Eng, A. 2008;496(1–2):439.

    Article  Google Scholar 

  49. Wang XJ, Wu K, Zhang HF, Huang WX, Chang H, Gan WM, Zheng MY, Peng DL. Effect of hot extrusion on the microstructure of a particulate reinforced magnesium matrix composite. Mater Sci Eng, A. 2007;465(1–2):78.

    Google Scholar 

  50. Zhao YQ, Wu WL, Chang H. Research on microstructure and mechanical properties of a new α + Ti2Cu alloy after semi-solid deformation. Mater Sci Eng, A. 2006;416(1–2):181.

    Article  Google Scholar 

  51. Tahamtan S, Golozar MA, Karimzadeh F, Niroumand B. Microstructure and tensile properties of thixoformed A356 alloy. Mater Charact. 2008;59(3):223.

    Article  CAS  Google Scholar 

  52. Chino Y, Kobata M, Iwasaki H, Mabuchi M. An investigation of compressive deformation behaviour for AZ91Mg alloy containing a small volume of liquid. Acta Mater. 2003;51(11):3309.

    Article  CAS  Google Scholar 

  53. Paes M, Zoqui EJ. Semi-solid behavior of new Al–Si–Mg alloys for thixoforming. Mater Sci Eng, A. 2005;406(1–2):63.

    Article  Google Scholar 

  54. Wang J, Phillion AB, Lu G. Development of a visco-plastic constitutive modeling for thixoforming of AA6061 in semi-solid state. J Alloy Compd. 2014;609(1):290.

    Article  CAS  Google Scholar 

  55. Nagira T, Morita S, Yokota H, Yasuda H, Gourlay CM, Yoshiya M, Sugiyama A, Uesugi K, Takeuchi A, Suzuki Y. In situ observation of deformation in semi-solid Fe–C alloys at high shear rate. Metall Mater Trans A. 2014;5613(12):5623.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge supports from University of Tehran and Shahid Rajaee Teacher Training University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mahmood Fatemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradjoy-Hamedani, M., Zarei-Hanzaki, A. & Fatemi, S.M. Characterization of semisolid deformation behavior of a high Zr-containing WE magnesium alloy. Rare Met. 41, 4201–4208 (2022). https://doi.org/10.1007/s12598-018-1046-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1046-6

Keywords

Navigation