Skip to main content
Log in

Effects of extrusion ratio and annealing treatment on the mechanical properties and microstructure of a Mg–11Gd–4.5Y–1Nd–1.5Zn–0.5Zr (wt%) alloy

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This study investigates the effects of the extrusion ratio and annealing treatment on the microstructure, texture and mechanical properties of an as-extruded Mg11Gd4.5Y1Nd1.5Zn0.5Zr (wt%) alloy. A high extrusion ratio (30:1) results in a homogeneous microstructure with fine dynamic recrystallized (DRXed) grains, while a low extrusion ratio (6:1) leads to a bimodal microstructure with un-DRXed regions and DRXed grains. The bimodal microstructure can be removed by subsequent annealing. This alloy contains several long-period stacking ordered (LPSO) and Mg5RE phases (RE: rare earth). The extrusion ratio and annealing process have negligible effects on the volume fraction of the LPSO phase but have significant effects on the Mg5RE phase. The volume fraction of the Mg5RE phase decreases as the extrusion ratio and annealing time increase. Cuboid precipitates form in the alloy extruded at low extrusion ratios after annealing. The alloy exhibits a bimodal texture with <0001> and <\( 10\overline{1} 0 \)> components. The presence of the <0001> component is determined by a critical grain size. The texture evolution (such as the degree of grain growth) is not influenced by the extrusion ratio, but it is affected by the annealing time, which is related to the Mg5RE phase rather than the LPSO phase. The grain refinement, the Mg5RE and LPSO phases, and the texture contribute to the alloy strengthening. Finally, a high-strength extruded Mg bar with a diameter of 32 mm (an extrusion ratio of 6:1) was successfully produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Mordike BL, Ebert T (2001) Magnesium: properties—applications—potential. Mater Sci Eng A 302:37–45

    Article  Google Scholar 

  2. Robson JD, Twier AM, Lorimer GW, Rogers P (2011) Effect of extrusion conditions on microstructure, texture, and yield asymmetry in Mg–6Y–7Gd–0.5 wt%Zr alloy. Mater Sci Eng A 528:7247–7256

    Article  Google Scholar 

  3. Alizadeh R, Mahmudi R, Ngan AHW, Langdon TG (2016) An unusual extrusion texture in Mg–Gd–Y–Zr alloys. Adv Eng Mater 18:1044–1049

    Article  Google Scholar 

  4. Homma T, Kunito N, Kamado S (2009) Fabrication of extraordinary high-strength magnesium alloy by hot extrusion. Scr Mater 61:644–647

    Article  Google Scholar 

  5. Yamasaki M, Anan T, Yoshimoto S, Kawamura Y (2005) Mechanical properties of warm-extruded Mg–Zn–Gd alloy with coherent 14H long periodic stacking ordered structure precipitate. Scr Mater 53:799–803

    Article  Google Scholar 

  6. Yu Z, Huang Y, Mendis CL, Hort N, Meng J (2015) Microstructural evolution and mechanical properties of Mg–11Gd–4.5Y–1Nd–1.5Zn–0.5Zr alloy prepared via pre-ageing and hot extrusion. Mater Sci Eng A 624:23–31

    Article  Google Scholar 

  7. Chen Y, Wang Q, Peng J, Zhai C, Ding W (2007) Effects of extrusion ratio on the microstructure and mechanical properties of AZ31 Mg alloy. J Mater Process Technol 182:281–285

    Article  Google Scholar 

  8. Shahzad M, Wagner L (2009) Influence of extrusion parameters on microstructure and texture developments, and their effects on mechanical properties of the magnesium alloy AZ80. Mater Sci Eng A 506:141–147

    Article  Google Scholar 

  9. Roy S, Kannan G, Suwas S, Surappa MK (2015) Effect of extrusion ratio on the microstructure, texture and mechanical properties of (Mg/AZ91)m–SiCp composite. Mater Sci Eng A 624:279–290

    Article  Google Scholar 

  10. Sadeghi A, Pekguleryuz M (2012) Effect of pre-deformation anneal on the microstructure and texture evolution of Mg–3Al–1Zn–0.7Sr alloy during hot extrusion. J Mater Sci 47:5374–5384. doi:10.1007/s10853-012-6416-0

    Article  Google Scholar 

  11. Mordike BL (2002) Creep-resistant magnesium alloys. Mater Sci Eng A 324:103–112

    Article  Google Scholar 

  12. Rokhlin LL (2003) Rokhlin magnesium alloys containing rare earth metals: structure and properties. Taylor & Francis Ltd, London, pp 1–256

    Google Scholar 

  13. Wen K, Du W-B, Liu K, Wang Z-H, Li S-B (2016) Microstructures and mechanical properties of homogenization and isothermal aging Mg–Gd–Er–Zn–Zr alloy. Rare Met 35:443–449

    Article  Google Scholar 

  14. Xu C, Zheng MY, Wu K, Wang ED, Fan GH, Xu SW, Kamado S, Liu XD, Wang GJ, Lv XY, Li MJ, Liu YT (2013) Effect of final rolling reduction on the microstructure and mechanical properties of Mg–Gd–Y–Zn–Zr alloy sheets. Mater Sci Eng A 559:232–240

    Article  Google Scholar 

  15. Yu D, Zhang D, Sun J, Luo Y, Xu J, Zhang H, Pan F (2017) Improving mechanical properties of ZM61 magnesium alloy by aging before extrusion. J Alloys Compd 690:553–560

    Article  Google Scholar 

  16. Lin L, Chen L, Liu Z (2008) Tensile strength improvement of an Mg–12Gd–3Y (wt%) alloy processed by hot extrusion and free forging. J Mater Sci 43:4493. doi:10.1007/s10853-008-2650-x

    Article  Google Scholar 

  17. Lu JW, Yin DD, Ren LB, Quan GF (2016) Tensile and compressive deformation behavior of peak-aged cast Mg–11Y–5Gd–2Zn–0.5Zr (wt%) alloy at elevated temperatures. J Mater Sci 51:10464–10477. doi:10.1007/s10853-016-0266-0

    Article  Google Scholar 

  18. Massalski TB, Okamoto H (1990) Binary alloy phase diagrams. ASM International, Materials Park

    Google Scholar 

  19. Peng Q, Wu Y, Fang D, Meng J, Wang L (2007) Microstructures and mechanical properties of Mg–8Gd–0.6Zr–xNd (x = 0, 1, 2 and 3 mass%) alloys. J Mater Sci 42:3908–3913. doi:10.1007/s10853-006-0451-7

    Article  Google Scholar 

  20. Penghuai F, Liming P, Haiyan J, Lan M, Chunquan Z (2008) Chemical composition optimization of gravity cast Mg–yNd–xZn–Zr alloy. Mater Sci Eng A 496:177–188

    Article  Google Scholar 

  21. Hagihara K, Kinoshita A, Sugino Y, Yamasaki M, Kawamura Y, Yasuda HY, Umakoshi Y (2010) Effect of long-period stacking ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy. Acta Mater 58:6282–6293

    Article  Google Scholar 

  22. Hagihara K, Kinoshita A, Fukusumi Y, Yamasaki M, Kawamura Y (2013) High-temperature compressive deformation behavior of Mg97Zn1Y2 extruded alloy containing a long-period stacking ordered (LPSO) phase. Mater Sci Eng A 560:71–79

    Article  Google Scholar 

  23. Hagihara K, Yokotani N, Umakoshi Y (2010) Plastic deformation behavior of Mg12YZn with 18R long-period stacking ordered structure. Intermetallics 18:267–276

    Article  Google Scholar 

  24. Yu ZJ, Huang Y, Qiu X, Yang Q, Sun W, Tian Z, Zhang DP, Meng J (2013) Fabrication of magnesium alloy with high strength and heat-resistance by hot extrusion and ageing. Mater Sci Eng A 578:346–353

    Article  Google Scholar 

  25. Yu Z, Huang Y, Qiu X, Wang G, Meng F, Hort N, Meng J (2015) Fabrication of a high strength Mg–11Gd–4.5Y–1Nd–1.5Zn–0.5Zr (wt%) alloy by thermomechanical treatments. Mater Sci Eng A 622:121–130

    Article  Google Scholar 

  26. Pérez-Prado MT, Ruano OA (2003) Texture evolution during grain growth in annealed MG AZ61 alloy. Scr Mater 48:59–64

    Article  Google Scholar 

  27. Pérez-Prado MT, Ruano OA (2002) Texture evolution during annealing of magnesium AZ31 alloy. Scr Mater 46:149–155

    Article  Google Scholar 

  28. Bohlen J, Yi SB, Swiostek J, Letzig D, Brokmeier HG, Kainer KU (2005) Microstructure and texture development during hydrostatic extrusion of magnesium alloy AZ31. Scr Mater 53:259–264

    Article  Google Scholar 

  29. Stanford N, Atwell D, Beer A, Davies C, Barnett MR (2008) Effect of microalloying with rare-earth elements on the texture of extruded magnesium-based alloys. Scr Mater 59:772–775

    Article  Google Scholar 

  30. Stanford N (2010) Micro-alloying Mg with Y, Ce, Gd and La for texture modification—a comparative study. Mater Sci Eng A 527:2669–2677

    Article  Google Scholar 

  31. Bohlen J, Nürnberg MR, Senn JW, Letzig D, Agnew SR (2007) The texture and anisotropy of magnesium–zinc–rare earth alloy sheets. Acta Mater 55:2101–2112

    Article  Google Scholar 

  32. Humphreys FJ, Hatherly M (1995) Recrystallization and related annealing phenomena. Pergramon, Oxford

    Google Scholar 

  33. Wu WX, Jin L, Zhang ZY, Ding WJ, Dong J (2014) Grain growth and texture evolution during annealing in an indirect-extruded Mg–1Gd alloy. J Alloys Compd 585:111–119

    Article  Google Scholar 

  34. Brokmeier HG (2011) Neutron and photon research for texture and stress characterisation of advanced materials. In: Jiao S, Jiang ZY, Bu JL (eds) Advances in superalloys, Pts 1 and 2. Trans Tech Publications, pp 891–894

  35. Nie JF (2012) Precipitation and hardening in magnesium alloys. Metall Mater Trans A 43:3891–3939

    Article  Google Scholar 

  36. Shao XH, Yang ZQ, Ma XL (2010) Strengthening and toughening mechanisms in Mg–Zn–Y alloy with a long period stacking ordered structure. Acta Mater 58:4760–4771

    Article  Google Scholar 

  37. Hantzsche K, Bohlen J, Wendt J, Kainer KU, Yi SB, Letzig D (2010) Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets. Scr Mater 63:725–730

    Article  Google Scholar 

  38. Stanford N (2013) The effect of rare earth elements on the behaviour of magnesium-based alloys: part 2—recrystallisation and texture development. Mater Sci Eng A 565:469–475

    Article  Google Scholar 

  39. Stanford N, Callaghan MD, de Jong B (2013) The effect of rare earth elements on the behaviour of magnesium-based alloys: part 1—hot deformation behaviour. Mater Sci Eng A 565:459–468

    Article  Google Scholar 

  40. Hadorn JP, Hantzsche K, Yi S, Bohlen J, Letzig D, Wollmershauser JA, Agnew SR (2011) Role of solute in the texture modification during hot deformation of mg–rare earth alloys. Metall Mater Trans A 43:1347–1362

    Article  Google Scholar 

  41. Garcés G, Pérez P, Adeva P (2005) Effect of the extrusion texture on the mechanical behaviour of Mg–SiCp composites. Scr Mater 52:615–619

    Article  Google Scholar 

  42. Wang YN, Huang JC (2003) Texture analysis in hexagonal materials. Mater Chem Phys 81:11–26

    Article  Google Scholar 

  43. Yang Z, Wang ZH, Duan HB, Guo YC, Gao PH, Li JP (2015) Microstructure evolution of Mg–6Gd–2Y alloy during solid solution and aging process. Mater Sci Eng A 631:160–165

    Article  Google Scholar 

  44. Gao Y, Wang Q, Gu J, Zhao Y, Tong Y (2007) Behavior of Mg–15Gd–5Y–0.5Zr alloy during solution heat treatment from 500 to 540 °C. Mater Sci Eng A 459:117–123

    Article  Google Scholar 

  45. Wagner F, Bozzolo N, Van Landuyt O, Grosdidier T (2002) Evolution of recrystallisation texture and microstructure in low alloyed titanium sheets. Acta Mater 50:1245–1259

    Article  Google Scholar 

  46. Alizadeh R, Mahmudi R, Ngan AHW, Langdon TG (2015) Microstructural stability and grain growth kinetics in an extruded fine-grained Mg–Gd–Y–Zr alloy. J Mater Sci 50:4940–4951. doi:10.1007/s10853-015-9041-x

    Article  Google Scholar 

  47. Yi S, Brokmeier H-G, Letzig D (2010) Microstructural evolution during the annealing of an extruded AZ31 magnesium alloy. J Alloys Compd 506:364–371

    Article  Google Scholar 

  48. Xu SW, Oh-ishi K, Kamado S, Uchida F, Homma T, Hono K (2011) High-strength extruded Mg–Al–Ca–Mn alloy. Scr Mater 65:269–272

    Article  Google Scholar 

  49. Yu Z, Huang Y, Gan W, Mendis CL, Zhong Z, Brokmeier HG, Hort N, Meng J (2016) Microstructure evolution of Mg–11Gd–4.5Y–1Nd–1.5Zn–0.5Zr (wt%) alloy during deformation and its effect on strengthening. Mater Sci Eng A 657:259–268

    Article  Google Scholar 

  50. Barnett MR, Keshavarz Z, Beer AG, Atwell D (2004) Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn. Acta Mater 52:5093–5103

    Article  Google Scholar 

  51. Oh-ishi K, Mendis CL, Homma T, Kamado S, Ohkubo T, Hono K (2009) Bimodally grained microstructure development during hot extrusion of Mg–2.4Zn–0.1Ag–0.1Ca–0.16Zr (at.%) alloys. Acta Mater 57:5593–5604

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Ms. Yuling Xu for her assistance with the data analysis. This work is supported by the National Key Technologies R&D Program (2012BAE01B04, 2012DFH50100, KGFZD-125-13-021, 201001C0104669453). Zijian Yu would like to thank the Chinese Academy of Sciences and the German Academic Exchange Service (CAS-DAAD) scholarship programme for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Meng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Huang, Y., Gan, W. et al. Effects of extrusion ratio and annealing treatment on the mechanical properties and microstructure of a Mg–11Gd–4.5Y–1Nd–1.5Zn–0.5Zr (wt%) alloy. J Mater Sci 52, 6670–6686 (2017). https://doi.org/10.1007/s10853-017-0902-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0902-3

Keywords

Navigation