Skip to main content
Log in

Study on mechanism of iron reduction in magnesium alloy melt

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This article studies the mechanism of iron reduction in magnesium alloy melt by investigating the iron concentrations in different parts in the melt with different holding time. The iron concentrations at the top, the center and the bottom of the melt are measured with the holding time of 300, 1800 and 7200 s. The elements in the sludge settling down in the crucible are also determined by ICP. With the increasing holding time, the iron content in the upper part of the melt decreases and that in the lower part of the melt increases. And the iron content in the sludge increases rapidly. The iron concentrations in the melt and the sludge change little with longer holding time than 1800 s. Among the three iron reduction agents B2O3, MnCl2 and TiO2, B2O3 has the highest iron reduction efficiency (IRE). IRE of B2O3 is as two times and five times as IRE of MnCl2 and IRE of TiO2 respectively. Formation of FeB and settling of it into melting sludge are believed to be the primary mechanism of iron reduction by B2O3 processing. The mechanism of iron reduction in magnesium melt by MnCl2 or TiO2 processing is studied by thermodynamic analysis. Formation of substance containing MnFeAl or TiFe with high density and high melting point and settling of them into melting sludge are suggested to be the mechanism of iron reduction by MnCl2 or TiO2 processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. GRAY and B. LUAN, J. All. Comp. 336 (2002) 88.

    CAS  Google Scholar 

  2. H. FURUYA, N. KOGISO, S. MATUNAGA and K. SENDA, Mater. Sci. Forum 350 (2000) 341.

    Google Scholar 

  3. R. BROWN, Light Metal Age 58(9/10) (2000) 54.

    Google Scholar 

  4. R. P. PAWLEK and R. B. BROWN, ibid. 59(8) (2001) 50.

    Google Scholar 

  5. S. KLEINER, O. BEFFORT, A. WAHLEN and P. J. UGGOWITZER, J. Light Metals 2 (2002) 277.

    Google Scholar 

  6. E. B. ROBERT, Light Metal Age 61(1/2) (2003) 53.

    Google Scholar 

  7. T. HAITANI, Y. TAMURA, T. MOTEGI, N. KONO and H. TAMEHIRO, Mater. Sci. Forum 419/422 (2003) 697.

    Google Scholar 

  8. J. D. HANAWALT, Trans. AIME 147 (1942) 279.

    Google Scholar 

  9. M. INOUE, M. IWAI, K. MATUZAWA, S. KAMADO and Y. KOJIMA, J. Japan Inst. Light Metals 48(6) (1998) 257.

    Google Scholar 

  10. Y. TAMURA, T. MOTEGI, N. KONO and E. SATO, Mater. Sci. Forum 350/351 (2000) 199.

    Google Scholar 

  11. T. HAITANI, Y. TAMURA, E. YANO, T. MOTEGI, N. KONO and E. SATO, J. Japan Inst. Light Met. 51 (2001) 403.

    CAS  Google Scholar 

  12. H. GAO, G. WU, W. DING, L. LIU, X. ZENG and Y. ZHU, Mater. Sci. Engng A368 (2004) 311.

    CAS  Google Scholar 

  13. G. WU, C. ZHAI, X. ZENG, W. DING and Y. ZHU, Acta Metall. Sinica 39 (2003) 729.

    CAS  Google Scholar 

  14. G. WU, M. XIE, C. DI, X. ZENG, Y. ZHU and W. DING, Trans. Nonferr. Met. Soc. China 13 (2003) 1260.

    CAS  Google Scholar 

  15. Y. LINAG, Y. CHE and X. LIU, “Handbook of Inorganic Thermodynamic Data” (North-East University Press, Shenyang, 1993).

    Google Scholar 

  16. R. KUZMAN, “Handbook of Thermodynamic Tables and Charts” (Hemisphere Publishing Corporation, Washington, 1976).

    Google Scholar 

  17. E. T. TURKDOGAN, “Physical Chemistry of High Temperature Technology” (Academic Press, New York, 1980) p. 25.

    Google Scholar 

  18. R. XU, “Magnesium Metallurgy” (Metallurgy Industry Press, Beijing, 1993), p. 314.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Tao Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, G.H., Gao, H.T., Ding, W.J. et al. Study on mechanism of iron reduction in magnesium alloy melt. J Mater Sci 40, 6175–6180 (2005). https://doi.org/10.1007/s10853-005-3161-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-3161-7

Keywords

Navigation