Skip to main content
Log in

Quench sensitivity of novel Al–Zn–Mg–Cu alloys containing different Cu contents

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The effect of copper content on quench sensitivity in novel Al–Zn–Mg–Cu alloys containing high zinc content was investigated by Jominy end quench test. Electrical conductivity and hardness test, temperature collecting, and transmission electron microscopy (TEM) technique were adopted for the properties and microstructure characterization of three alloys with different copper contents. The results indicate that the electrical conductivity of all three alloys increases with the increase of distance from the quenched end, while the hardness shows an opposite trend. If the dropping of 10% hardness is defined as the critical evaluation standard of quenching, the depth of quenched layer of Alloys I, II, and III are 70, 55, and 40 mm, respectively. The precipitation behavior on grain boundaries of three alloys is similar except for a little difference in size, while the size of precipitates in grains of Alloy III with higher copper content is larger than those of the other two alloys at the same location. Considering all results, the stability of the supersaturated solid solution of Alloy III is lower than those of the other two alloys, meaning that Alloy III shows the highest quench sensitivity. Higher copper content leads to higher quench sensitivity in novel Al–Zn–Mg–Cu alloys with the same content of magnesium, zinc, and other trace elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xiong BQ, Li XW, Zhang YA, Li ZH, Zhu BH, Wang F, Liu HW. Novel Al–7.5Zn–1.65Mg–1.4Cu–0.12Zr alloys with high strength high toughness and low quench sensitivity. Chin J Nonferrous Metals. 2009;19(9):1539.

    CAS  Google Scholar 

  2. Wang T, Yin ZM, Sun Q. Effect of homogenization treatment on microstructure and hot workability of high strength 7B04 aluminum alloy. Trans Nonferrous Metals Soc China. 2007;17(2):335.

    Article  CAS  Google Scholar 

  3. Heinz A, Haszler A, Keidel C. Recent development in aluminium alloys for aerospace applications. Mater Sci Eng A. 2000;280(1):102.

    Article  Google Scholar 

  4. Liu J. Advanced aluminum and hybrid aerostructures for future aircraft. Mater Sci Forum. 2006;519–521(6):1233.

    Article  Google Scholar 

  5. James T, Staley JT. Aluminum alloys for aerostructures. Adv Mater Process. 1997;152(4):17.

    Google Scholar 

  6. Lucasak DA, Hart RM. Aluminum alloy development efforts for compression dominated structure of aircraft. Light Metal Age. 1991;2(9):11.

    Google Scholar 

  7. Fang HC, Chen KH, Chen X. Effect of Cr, Yb and Zr additions on localized corrosion of Al–Zn–Mg–Cu alloy. Corros Sci. 2009;51(12):287.

    Article  Google Scholar 

  8. Morere B, Shahani R, Maurice C. The influence of Al3Zr dispersoids on the recrystallization of hot-deformed AA 7010 alloys. Metall Mater Trans A. 2001;32(3):625.

    Article  Google Scholar 

  9. Stiller K, Warren PJ, Hansen V, Angenete J, Gjonnes J. Investigation of precipitation in an Al–Zn–Mg alloy after two-step ageing treatment at 100 °C and 150 °C. Mater Sci Eng A. 1999;270(1):55.

    Article  Google Scholar 

  10. Godard D, Archambault P, Aeby-Gautier E, Lapasset G. Precipitation sequences during quenching of the AA 7010 alloy. Acta Mater. 2002;50(9):2319.

    Article  CAS  Google Scholar 

  11. Wen K, Xiong BQ, Fan YQ, Zhang YA, Li ZH, Li XW, Wang F, Liu HW. Transformation and dissolution of second phases during solution treatment of Al–Zn–Mg–Cu alloy containing high zinc. Rare Met. 2016;. https://doi.org/10.1007/s12598-016-0768-6.

    Article  Google Scholar 

  12. Deschamps A, Texier G, Ringeval S, Delfaut-Durut L. Influence of cooling rate on the precipitation microstructure in a medium strength Al–Zn–Mg alloy. Mater Sci Eng A. 2009;501(1–2):133.

    Article  Google Scholar 

  13. Gable BM, Csontos AA, Starke EA Jr. A quench sensitivity study on the novel Al–Li–Cu–X alloy AF/C 458. J Light Met. 2002;2(2):65.

    Article  Google Scholar 

  14. Xu DK, Birbilis N, Lashansky D. Effect of solution treatment on the corrosion behaviour of aluminium alloy AA7150: optimisation for corrosion resistance. Corros Sci. 2011;53(1):217.

    Article  CAS  Google Scholar 

  15. Han NM, Zhang XM, Liu SD, Liu DG, Zhang R. Effect of solution treatment on the strength and fracture toughness of aluminum alloy 7050. J Alloys Compd. 2011;509(10):4138.

    Article  CAS  Google Scholar 

  16. Mazibuko NE, Curle UA. Effect of solution heat treatment time on a rheocast Al–Zn–Mg–Cu alloy. Mater Sci Forum. 2011;690(15):9.

    Google Scholar 

  17. Wang H, Xu J, Kang Y. Study on inhomogeneous characteristics and optimize homogenization treatment parameter for large size DC ingots of Al–Zn–Mg–Cu alloys. J Alloys Compd. 2014;585(5):19.

    CAS  Google Scholar 

  18. Dumont D, Deschamps A, Brechet Y. Characterisation of precipitation microstructures in aluminium alloys 7040 and 7050 and their relationship to mechanical behaviour. Mater Sci Eng A. 2004;20(5):567.

    CAS  Google Scholar 

  19. Deng YL, Wan L, Zhang Y. Evolution of microstructures and textures of 7050 Al alloy hot-rolled plate during staged solution heat-treatments. J Alloys Compd. 2010;498(1):88.

    Article  CAS  Google Scholar 

  20. Robson JD. Microstructural evolution in aluminium alloy 7050 during processing. Mater Sci Eng A. 2004;382(1):112.

    Article  Google Scholar 

  21. Zhang XM, Liu SD, You JH, Zhang C, Zhang XY. Influence of aging on quench sensitivity effect of 7055 aluminum alloy. Chin J Nonferrous Met. 2007;59(1):53.

    Google Scholar 

  22. Starink MJ, Li XM. A model for the electrical conductivity of peak-aged and overaged Al-ZN-Mg-Cu alloys. Metall Mater Trans A. 2003;34(4):899.

    Article  Google Scholar 

  23. Deschamps A, Bréchet Y. Influence of quench and heating rates on the ageing response of an Al–Zn–Mg–Zr alloy. Mater Sci Eng A. 1998;251(1–2):200.

    Article  Google Scholar 

  24. Ma SH, Maniruzzam MD, Mackenzie DS, Sisson RD Jr. A methodology to predict the effects of quench rates on mechanical properties of cast aluminum alloys. Metall Mater Trans B. 2007;38(4):583.

    Article  Google Scholar 

  25. Liu SD, Zhang Y, Liu WJ, Deng YL, Zhang XM. Effect of step-quenching on microstructure of aluminum alloy 7055. Trans Nonferrous Met Soc China. 2010;20(1):1.

    Article  Google Scholar 

  26. Underwood EE. Quantitative Stereology. Paris: Addision-Wesley Longman; 1970. 98.

    Google Scholar 

  27. Milman YV, Sirko AJ, Lotsko DV. Microstructure and mechanical properties of cast and wrought Al–Zn–Mg–Cu alloys modified with Zr and Sc. Mater Sci Forum. 2002;396–402(2):1217.

    Article  Google Scholar 

  28. Srivatsan TS. Microstructure, tensile properties and fracture behaviour of aluminium alloy 7150. J Mater Sci. 1992;27(17):4772.

    Article  CAS  Google Scholar 

  29. Pierre A, David G. High temperature precipitation kinetics and TTT curve of a 7xxx alloy by in situ electrical resistivity measurements and differential calorimetry. Scr Mater. 2000;42(7):675.

    Article  Google Scholar 

  30. Tanner DA, Robinson JS. Effect of precipitation during quenching on the mechanical properties of the aluminium alloy 7010 in the W-temper. J Mater Process Technol. 2004;s153-154(22):998.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFB0300803), the National Natural Science Foundation of China (No. 51274046), and the National Key Basic Research Program (No. 2012CB619504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi-Wu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, JS., Li, XW., Xiong, BQ. et al. Quench sensitivity of novel Al–Zn–Mg–Cu alloys containing different Cu contents. Rare Met. 39, 1395–1401 (2020). https://doi.org/10.1007/s12598-017-0981-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0981-y

Keywords

Navigation