Skip to main content
Log in

The Influence of the Zn/Mg Ratio on the Quench Sensitivity of Al-Zn-Mg-Cu Alloys

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effects of the Zn/Mg ratio on the precipitate behavior and mechanical properties of Al-Zn-Mg-Cu alloys at different quenching rates were investigated by a Jominy end-quench test, tensile test and microstructural analysis. The results show that the hardness and strength of the aged alloys clearly decrease with increasing quenching distance (D). Additionally, the alloy with a Zn/Mg ratio of 5.42 has a more obvious drop in yield strength than the alloy with a higher ratio of 7.09 when D is varied from 10 mm to 142 mm. During slow quenching, fewer equilibrium η phases are formed in the alloy with a higher Zn/Mg ratio of 7.09, and then a larger number of fine η′ phases precipitate during subsequent aging, which reduces the quench sensitivity of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All the data discussed are directly presented in the paper and are automatically accessible.

References

  1. Y. Zhang, S. Jin, P.W. Trimby, X. Liao, M.Y. Murashkin, R.Z. Valiev, J. Liu, J.M. Cairney, S.P. Ringer and G. Sha, Dynamic Precipitation, Segregation and Strengthening of an Al-Zn-Mg-Cu Alloy (AA7075) Processed by High-Pressure Torsion, Acta Mater., 2019, 162, p 19–32.

    Article  CAS  Google Scholar 

  2. A.M. Cassell, J.D. Robson, C.P. Race, A. Eggeman, T. Hashimoto and M. Besel, Dispersoid Composition in Zirconium Containing Al-Zn-Mg-Cu (AA7010) Aluminium Alloy, Acta Mater., 2019, 169, p 135–146.

    Article  CAS  Google Scholar 

  3. M. Malekan, M. Emamy, N. Mossayebi and M. Lotfpour, Effects of Al3Ni and Al7Cr Intermetallics and T6 Heat Treatment on the Microstructure and Tensile Properties of Al-Zn-Mg-Cu Alloy, J. Mater. Eng. Perform., 2020, 29(5), p 3432–3442.

    Article  CAS  Google Scholar 

  4. M.J. Starink, B. Milkereit, Y. Zhang and P.A. Rometsch, Predicting the Quench Sensitivity of Al–Zn–Mg–Cu Alloys: a Model for Linear Cooling and Strengthening, Mater. Des., 2015, 88, p 958–971.

    Article  CAS  Google Scholar 

  5. S.V. Sajadifar, G. Moeini, E. Scharifi, C. Lauhoff, S. Böhm and T. Niendorf, On the Effect of Quenching on Postweld Heat Treatment of Friction-Stir-Welded Aluminum 7075 Alloy, J. Mater. Eng. Perform., 2019, 28(8), p 5255–5265.

    Article  CAS  Google Scholar 

  6. B. Milkereit and M.J. Starink, Quench Sensitivity of Al–Mg–Si Alloys: A Model for lInear Cooling and Strengthening, Mater. Des., 2015, 76, p 117–129.

    Article  CAS  Google Scholar 

  7. X. Zhang, X. Zhou and J.-O. Nilsson, Corrosion Behaviour of AA6082 Al-Mg-Si Alloy Extrusion: The Influence of Quench Cooling Rate, Corros. Sci., 2019, 150, p 100–109.

    Article  CAS  Google Scholar 

  8. Y. Zhang, D. Pelliccia, B. Milkereit, N. Kirby, M.J. Starink and P.A. Rometsch, Analysis of Age Hardening Precipitates of Al-Zn-Mg-Cu Alloys in a Wide Range of Quenching Rates Using Small Angle X-ray Scattering, Mater. Des., 2018, 142, p 259–267.

    Article  CAS  Google Scholar 

  9. Y.-C. Chiu, K.-T. Du, H.-Y. Bor, G.-H. Liu and S.-L. Lee, The Effects of Cu, Zn and Zr on the Solution Temperature and Quenching Sensitivity of Al–Zn–Mg–Cu Alloys, Mater. Chem. Phys., 2020, 247, p 122853.

    Article  CAS  Google Scholar 

  10. F. Jiang, J. Huang, L. Tang, F. Wang, Q. Xiao and Z. Yin, Effects of Quench Rate on Mechanical Properties and Microstructures of High-Strength 7046A Aluminum Alloy, JOM, 2019, 71(5), p 1722–1730.

    Article  CAS  Google Scholar 

  11. R.J. Flynn and J. Robinson, The Application of Advances in Quench Factor Analysis Property Prediction to the Heat Treatment of 7010 Aluminium Alloy, J. Mater. Process. Technol., 2004, 153, p 674–680.

    Article  CAS  Google Scholar 

  12. P. Rometsch, M.J. Starink and P.J. Gregson, Improvements in Quench Factor Modelling, Mater. Sci. Eng., A, 2003, 339(1–2), p 255–264.

    Article  Google Scholar 

  13. J.S. Robinson, D.A. Tanner, C.E. Truman, A.M. Paradowska and R.C. Wimpory, The Influence of Quench Sensitivity on Residual Stresses in the Aluminium Alloys 7010 and 7075, Mater. Charact., 2012, 65, p 73–85.

    Article  CAS  Google Scholar 

  14. D.-Y. Liu, Y.-L. Ma, J.-F. Li, C. Liu, Y. Du, Y.-L. Chen, X.-H. Zhang, W. You and R.-F. Zhang, Quench Sensitivity and Microstructure Evolution of the 2060 Al-Cu-Li Alloy with a Low Mg Content, Mater. Charact., 2021, 177, p 111156.

    Article  CAS  Google Scholar 

  15. Y.-L. Deng, L. Wan, Y.-Y. Zhang and X.-M. Zhang, Influence of Mg Content on Quench Sensitivity of Al–Zn–Mg–Cu Aluminum Alloys, J. Alloy. Compd., 2011, 509(13), p 4636–4642.

    Article  CAS  Google Scholar 

  16. S.D. Liu, X.M. Zhang, M.A. Chen and J.H. You, Influence of Aging on Quench Sensitivity Effect of 7055 Aluminum Alloy, Mater. Charact., 2008, 59(1), p 53–60.

    Article  CAS  Google Scholar 

  17. M. Vlach, J. Cizek, V. Kodetova, M. Leibner, M. Cieslar, P. Harcuba, L. Bajtosova, H. Kudrnova, T. Vlasak, V. Neubert, E. Cernoskova and P. Kutalek, Phase Transformations in Novel Hot-Deformed Al–Zn–Mg–Cu–Si–Mn–Fe(–Sc–Zr) Alloys, Mater. Des., 2020, 193, p 108821.

    Article  CAS  Google Scholar 

  18. M. Vlach, V. Kodetova, J. Cizek, M. Leibner, T. Kekule, F. Lukáč, M. Cieslar, L. Bajtošová, H. Kudrnová and V. Sima, Role of Small Addition of Sc and Zr in Clustering and Precipitation Phenomena Induced in AA7075, Metals, 2021, 11(1), p 8.

    Article  CAS  Google Scholar 

  19. T.-A. Pan, Y.-C. Tzeng, H.-Y. Bor, K.-H. Liu and S.-L. Lee, Effects of the Coherency of Al3Zr on the Microstructures and Quench Sensitivity of Al–Zn–Mg–Cu Alloys, Mater Today Commun, 2021, 28, p 102611.

    Article  CAS  Google Scholar 

  20. P. Priya, D.R. Johnson and M.J.M. Krane, Precipitation During Cooling of 7XXX Aluminum Alloys, Comput. Mater. Sci., 2017, 139, p 273–284.

    Article  CAS  Google Scholar 

  21. J.-G. Tang, H. Chen, X.-M. Zhang, S.-D. Liu, W.-J. Liu, H. Ouyang and H.-P. Li, Influence of Quench-Induced Precipitation on Aging Behavior of Al-Zn-Mg-Cu Alloy, Trans. Nonferr. Metals Soc. China, 2012, 22(6), p 1255–1263.

    Article  CAS  Google Scholar 

  22. L. Lin, Z. Liu, S. Bai, Y. Zhou, W. Liu and Q. Lv, Effects of Ge and Ag Additions on Quench Sensitivity and Mechanical Properties of an Al–Zn–Mg–Cu Alloy, Mater. Sci. Eng., A, 2017, 682, p 640–647.

    Article  CAS  Google Scholar 

  23. S.T. Lim, S.J. Yun and S.W. Nam, Improved Quench Sensitivity in Modified Aluminum Alloy 7175 for Thick Forging Applications, Mater. Sci. Eng., A, 2004, 371(1), p 82–90.

    Article  CAS  Google Scholar 

  24. B. Nie, P. Liu and T. Zhou, Effect of Compositions on the Quenching Sensitivity of 7050 and 7085 Alloys, Mater. Sci. Eng., A, 2016, 667, p 106–114.

    Article  CAS  Google Scholar 

  25. S. Liu, Q. Zhong, Y. Zhang, W. Liu, X. Zhang and Y. Deng, Investigation of Quench Sensitivity of High Strength Al–Zn–Mg–Cu Alloys by Time–Temperature-Properties Diagrams, Mater. Des., 2010, 31(6), p 3116–3120.

    Article  CAS  Google Scholar 

  26. H.-Q. Lin, L.-Y. Ye, L. Sun, T. Xiao, S.-D. Liu, Y.-L. Deng and X.-M. Zhang, Effect of Three-Step Homogenization on Microstructure and Properties of 7N01 Aluminum Alloys, Trans. Nonferr. Metals Soc. China, 2018, 28(5), p 829–838.

    Article  CAS  Google Scholar 

  27. M. Vlach, J. Čížek, V. Kodetová, T. Kekule, F. Lukáč, M. Cieslar, H. Kudrnová, L. Bajtošová, M. Leibner, P. Harcuba, J. Málek and V. Neubert, Annealing Effects in Cast Commercial Aluminium Al–Mg–Zn–Cu(–Sc–Zr) Alloys, Met. Mater. Int., 2021, 27(5), p 995–1004.

    Article  CAS  Google Scholar 

  28. X. Zhang, W. Liu, S. Liu and M. Zhou, Effect of Processing Parameters on Quench Sensitivity of an AA7050 Sheet, Mater. Sci. Eng., A, 2011, 528(3), p 795–802.

    Article  CAS  Google Scholar 

  29. J. Evancho and J. Staley, Kinetics of Precipitation in Aluminum Alloys During Continuous Cooling, Metallurg. Trans., 1974, 5(1), p 43.

    Article  CAS  Google Scholar 

  30. Y.-H. Zhang, S.-C. Yang and H.-Z. Ji, Microstructure Evolution in Cooling Process of Al–Zn–Mg–Cu Alloy and Kinetics Description, Trans. Nonferr. Metals Soc. China, 2012, 22(9), p 2087–2091.

    Article  CAS  Google Scholar 

  31. T. Ogura, S. Hirosawa, A. Cerezo and T. Sato, Atom Probe Tomography of Nanoscale Microstructures within Precipitate Free Zones in Al–Zn–Mg (–Ag) Alloys, Acta Mater., 2010, 58(17), p 5714–5723.

    Article  CAS  Google Scholar 

  32. R. Ghiaasiaan, B.S. Amirkhiz and S. Shankar, Quantitative Metallography of Precipitating and Secondary Phases After Strengthening Treatment of Net Shaped Casting of Al-Zn-Mg-Cu (7000) Alloys, Mater. Sci. Eng., A, 2017, 698, p 206–217.

    Article  CAS  Google Scholar 

  33. A. Deschamps, G. Texier, S. Ringeval and L. Delfaut-Durut, Influence of Cooling Rate on the Precipitation Microstructure in a Medium Strength Al–Zn–Mg alloy, Mater. Sci. Eng., A, 2009, 501(1), p 133–139.

    Article  CAS  Google Scholar 

  34. M. Nicolas and A. Deschamps, Characterisation and Modelling of Precipitate Evolution in an Al–Zn–Mg Alloy During Non-Isothermal Heat Treatments, Acta Mater., 2003, 51(20), p 6077–6094.

    Article  CAS  Google Scholar 

  35. W. Hume-Rothery, G. Mabbott and W.K. Channel Evans, The Freezing Points, Melting Points, and Solid Solubility Limits of the Alloys of Sliver and Copper with the Elements of the B Sub-Groups, Philosoph. Trans. R. Soc. London Ser. A, Contain. Papers Math. Phys Charact., 1934, 233(721–730), p 1–97.

    CAS  Google Scholar 

  36. Y.F. Ye, Y.H. Zhang, Q.F. He, Y. Zhuang, S. Wang, S.Q. Shi, A. Hu, J. Fan and Y. Yang, Atomic-Scale Distorted Lattice in Chemically Disordered Equimolar Complex Alloys, Acta Mater., 2018, 150, p 182–194.

    Article  CAS  Google Scholar 

  37. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen and P.K. Liaw, Solid-Solution Phase Formation Rules for Multi-Component Alloys, Adv. Eng. Mater., 2008, 10(6), p 534–538.

    Article  CAS  Google Scholar 

  38. C. Li, S. Wang, D. Zhang, S. Liu, Z. Shan and X. Zhang, Effect of Zener-Hollomon Parameter on Quench Sensitivity of 7085 Aluminum Alloy, J. Alloy. Compd., 2016, 688, p 456–462.

    Article  CAS  Google Scholar 

  39. F. Jiang, J. Huang, Y. Jiang and C. Xu, Effects of Quenching Rate and Over-Aging on Microstructures, Mechanical Properties and Corrosion Resistance of an Al–Zn–Mg (7046A) Alloy, J. Alloys Comp., 2021, 854, p 157272.

    Article  CAS  Google Scholar 

  40. X. Peng, Q. Guo, X. Liang, Y. Deng, Y. Gu, G. Xu and Z. Yin, Mechanical Properties, Corrosion Behavior and Microstructures of a Non-Isothermal Ageing Treated Al-Zn-Mg-Cu Alloy, Mater. Sci. Eng., A, 2017, 688, p 146–154.

    Article  CAS  Google Scholar 

  41. Y. Li, G. Xu, X. Peng, F. Wang, Y. Deng and X. Liang, Effect of Different Aging Treatment on High Temperature Properties of Die-Forged Al-5.87Zn-2.07Mg-2.42Cu Alloy, Mater. Charact., 2020, 164, p 110239.

    Article  CAS  Google Scholar 

  42. F. Jiang, L. Tang, J. Huang, Y. Cai and Z. Yin, Influence of Equal Channel Angular Pressing on the Evolution of Microstructures, Aging Behavior and Mechanical Properties of as-Quenched Al-6.6Zn-1.25Mg Alloy, Mater Charact, 2019, 153, p 1–13.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research received support from the National Key Research and Development Program of China (No. 2018YFB2001801), the Hunan Provincial Natural Science Foundation of China (No. 2020JJ5742) and the Key Research and Development Program of Guangdong Province (2020B010186002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Xu, G., Li, Y. et al. The Influence of the Zn/Mg Ratio on the Quench Sensitivity of Al-Zn-Mg-Cu Alloys. J. of Materi Eng and Perform 31, 4214–4223 (2022). https://doi.org/10.1007/s11665-021-06472-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-06472-y

Keywords

Navigation