Skip to main content

Advertisement

Log in

Morphologies and evolution of intermetallic compounds formed between Sn1.0Ag0.7Cu composite solder and Cu substrate

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

This study investigated the morphologies of the intermetallic compounds (IMC) formed during soldering reaction between Sn1.0Ag0.7Cu–1.0SnO2 composite solder and Cu substrate at various temperatures. The prism-type Cu6Sn5 forms when the soldering temperature is 260 or 280 °C, while those grains transform from prism type to scallop type at the temperatures of 300 and 320 °C. It can be found that the morphologies of Cu6Sn5 grains affect adsorption of Ag3Sn nanoparticles during soldering reaction. The scallop-type grains with a higher growth rate need to adsorb large amounts of Ag3Sn particles. In terms of mechanical behavior, the shear strength of solder joint is improved from 40 to 46 MPa at soldering temperature of 300 °C. In addition, the thickness of IMC increases with the extension of aging time. During aging, the morphology of Cu6Sn5 grains remains scallop type, but the number of Ag3Sn nanoparticles is reduced largely. The scallop-type Cu6Sn5 can increase in size and flatten in morphology with the aging time increasing.

Graphical Abstract

When the soldering temperature changes from 260 to 360 °C, the morphologies of Cu6Sn5 grains transformed from prism-type to scallop-type. The shear strength of solder joint is improved from 40 to 46 Mpa at 300 °C soldering temperature

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anderson IE. Development of Sn–Ag–Cu and Sn–Ag–Cu–X alloys for Pb-free electronic solder applications. J Mater Sci Mater Electron. 2007;18(1–3):55.

    CAS  Google Scholar 

  2. Qu JF, Xu J, Hu Q, Zhang FW, Zhang SM. Modification of Sn–1.0Ag–0.5Cu solder using nickel and boron. Rare Met. 2015;34(11):783.

    Article  CAS  Google Scholar 

  3. Zhang L, Gao L. Interfacial compounds growth of SnAgCu (nano La2O3)/Cu solder joints based on experiments and FEM. J Alloys Compd. 2015;635:55.

    Article  CAS  Google Scholar 

  4. Chung CS, Kim HK. Comparison of the fracture toughness of Cu6Sn5 intermetallic compound as measured by nanoindentation and other methods. Mater Lett. 2016;162:185.

    Article  Google Scholar 

  5. He M, Ekpenuma SN, Acoff VL. Microstructure and creep deformation of Sn–Ag–Cu–Bi/Cu solder joints. J Electron Mater. 2008;37(3):300.

    Article  Google Scholar 

  6. Laurila T, Vuorinen V, Kivilahti JK. Interfacial reactions between lead-free solders and common base materials. Mater Sci Eng R. 2005;49(1):1.

    Article  Google Scholar 

  7. Tseng CF, Lee TK, Ramakrishna G, Liu KC, Duh JG. Suppressing Ni3Sn4 formation in the Sn–Ag–Cu solder joints with Ni–P/Pd/Au surface finish. Mater Lett. 2011;65(21):3216.

    Article  CAS  Google Scholar 

  8. Li Y, Chan YC. Effect of silver (Ag) nanoparticle size on the microstructure and mechanical properties of Sn58Bi–Ag composite solders. J Alloys Compd. 2015;645:566.

    Article  CAS  Google Scholar 

  9. Gu Y, Zhao X, Li Y, Liu Y, Wang Y, Li ZY. Effect of nano-Fe2O3 additions on wettability and interfacial intermetallic growth of low-Ag content Sn–Ag–Cu solders on Cu substrates. J Alloys Compd. 2015;627:39.

    Article  CAS  Google Scholar 

  10. Wang Y, Zhao X, Xie X, Gu Y, Liu Y. Effects of nano-SiO2 particles addition on the microstructure, wettability, joint shear force and the interfacial IMC growth of Sn3.0Ag0.5Cu solder. J Mater Sci Mater Electron. 2015;26(12):9387.

    Article  CAS  Google Scholar 

  11. Tsao LC. Suppressing effect of 0.5wt.% nano-TiO2 addition into Sn–3.5Ag–0.5Cu solder alloy on the intermetallic growth with Cu substrate during isothermal aging. J Alloys Compd. 2011;509(33):8441.

    Article  CAS  Google Scholar 

  12. Shiue YY, Chuang TH. Effect of La addition on the interfacial intermetallics and bonding strengths of Sn–58Bi solder joints with Au/Ni/Cu pads. J Alloys Compd. 2010;491(1):610.

    Article  CAS  Google Scholar 

  13. Tang Y, Li GY, Luo SM, Wang KQ, Zhou B. Diffusion wave model and growth kinetics of interfacial intermetallic compounds in Sn–3.0Ag–0.5Cu–xTiO2 solder joints. J Mater Sci Mater Electron. 2015;26(5):3196.

    Article  CAS  Google Scholar 

  14. Zeng K, Tu KN. Six cases of reliability study of Pb-free solder joints in electronic packaging technology. Mater Sci Eng R. 2002;38(2):55.

    Article  Google Scholar 

  15. Yu DQ, Wang L, Wu CML, Law CMT. The formation of nano-Ag3Sn particles on the intermetallic compounds during wetting reaction. J Alloys Compd. 2005;389(1):153.

    Article  CAS  Google Scholar 

  16. Qi L, Huang J, Zhao X, Zhang H. Effect of thermal-shearing cycling on Ag3Sn microstructural coarsening in SnAgCu solder. J Alloys Compd. 2009;469(1):102.

    Article  CAS  Google Scholar 

  17. Kim KS, Huh SH, Suganuma K. Effects of fourth alloying additive on microstructures and tensile properties of Sn–Ag–Cu alloy and joints with Cu. Microelectron Reliab. 2003;43(2):259.

    Article  CAS  Google Scholar 

  18. Chuang TH, Tsao LC, Chung CH, Chang SY. Evolution of Ag3Sn compounds and microhardness of Sn3.5Ag0.5Cu nano-composite solders during different cooling rate and aging. Mater Des. 2012;39:475.

    Article  CAS  Google Scholar 

  19. Guo F, Choi S, Subramanian KN, Bieler TR, Lucas JP, Achari A, Paruchrri M. Evaluation of creep behavior of near-eutectic Sn–Ag solders containing small amount of alloy additions. Mater Sci Eng A. 2003;351(1):190.

    Article  Google Scholar 

  20. Liu X, Huang M, Zhao Y, Wu CML, Wang W. The adsorption of Ag3Sn nano-particles on Cu–Sn intermetallic compounds of Sn–3Ag–0.5Cu/Cu during soldering. J Alloys Compd. 2010;492(1):433.

    Article  CAS  Google Scholar 

  21. Tang Y, Li GY, Chen DQ, Pan YC. Influence of TiO2 nanoparticles on IMC growth in Sn–3.0Ag–0.5Cu–xTiO2 solder joints during isothermal aging process. J Mater Sci Mater Electron. 2014;25(2):981.

    Article  CAS  Google Scholar 

  22. Suh JO, Tu KN, Lutsenko GV, Gusak AM. Size distribution and morphology of Cu6Sn5 scallops in wetting reaction between molten solder and copper. Acta Mater. 2008;56(5):1075.

    Article  CAS  Google Scholar 

  23. Zou HF, Yang HJ, Zhang ZF. Morphologies, orientation relationships and evolution of Cu6Sn5 grains formed between molten Sn and Cu single crystals. Acta Mater. 2008;56(11):2649.

    Article  CAS  Google Scholar 

  24. Bian X, Xuemin P, Xubo Q. Medium-range order clusters in metal melts. Sci China Ser E. 2002;45(2):113.

    Article  CAS  Google Scholar 

  25. Tsao LC. Evolution of nano-Ag3Sn particle formation on Cu–Sn intermetallic compounds of Sn3.5Ag0.5Cu composite solder/Cu during soldering. J Alloys Compd. 2011;509(5):2326.

    Article  CAS  Google Scholar 

  26. Zhang ZH, Li MY, Liu ZQ, Yang SH. Growth characteristics and formation mechanisms of Cu6Sn5 phase at the liquid-Sn0.7Cu/(111) Cu and liquid-Sn0.7Cu/(001) Cu joint interfaces. Acta Mater. 2016;104:1.

    Article  CAS  Google Scholar 

  27. Yang M, Ji H, Wang S, Ko YH, Lee CW, Wu J, Li M. Effects of Ag content on the interfacial reactions between liquid Sn–Ag–Cu solders and Cu substrates during soldering. J Alloys Compd. 2016;679:18.

    Article  CAS  Google Scholar 

  28. Shen J, Chan YC. Effect of metal/ceramic nanoparticle-doped fluxes on the wettability between Sn–Ag–Cu solder and a Cu layer. J Alloys Compd. 2009;477(1):909.

    Article  CAS  Google Scholar 

  29. Hu F, Yang S, Byoung Kang U, Hu A, Li M. The effect of Cu substrate texture on the intermetallic compounds (IMCs) growth at a Sn3.5Ag–Cu interface. J Mater Sci Mater Electron. 2016;27(4):3854.

    Article  CAS  Google Scholar 

  30. Laurila T, Vuorinen V, Paulasto-Kröckel M. Impurity and alloying effects on interfacial reaction layers in Pb-free soldering. Mater Sci Eng R. 2010;68(1):1.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Fundamental Research Funds for the Central Universities (2017XKQY007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Wei Sui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, YW., Sun, R., Qi, JQ. et al. Morphologies and evolution of intermetallic compounds formed between Sn1.0Ag0.7Cu composite solder and Cu substrate. Rare Met. 42, 1043–1049 (2023). https://doi.org/10.1007/s12598-017-0968-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0968-8

Keywords

Navigation