Skip to main content
Log in

Microstructure stability of γ′ + β Ni–Al coated single-crystal superalloy N5 annealed at 1100 °C

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

γ′ + β Binary-phase Ni–Al coatings were prepared on second-generation single-crystal superalloy René N5 (N5) substrates by electron beam physical vapor deposition. Inter-diffusion behavior between coatings and substrates at 1100 °C and its effects on microstructure stability of the substrates were investigated. A 3-μm-thick substrate diffusion zone (SDZ) layer forms beneath the coating/substrate interface after 5-h heat treatment. The SDZ layer is composed of γ′-Ni3Al phases and needle-like precipitates growing along (100) \(\left\langle {110} \right\rangle\) or (100) \(\left\langle { 1 {\bar{\text{1}}\text{0}}} \right\rangle\) direction. After 100-h annealing, the thickness of the SDZ layer increases to ~17 μm, much lower than that of the single β-NiAl-coated substrate, while keeping single-crystal microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Padture NP, Gell M, Jordan EH. Thermal barrier coatings for gas-turbine engine applications. Science. 2002;V296(5566):280.

    Article  Google Scholar 

  2. Guo L, Li MZ, He SX, Zhang CL, Wang Q, Ye FX. Preparation and hot corrosion behavior of plasma sprayed nanostructured Gd2Zr2O7–LaPO4 thermal barrier coatings. J Alloys Compd. 2017;698:13.

    Article  CAS  Google Scholar 

  3. Guo HB, Sun LD, Li HF, Gong SK. High temperature oxidation behavior of hafnium modified NiAl bond coat in EB-PVD thermal barrier coating system. Thin Solid Films. 2008;516(16):5732.

    Article  CAS  Google Scholar 

  4. Liang SJ, Song HH, Zheng L, Guo HB. Cyclic oxidation behavior of electron beam physical vapor deposition NiAlHf and NiAlHfCrSi coatings at 1150 °C. Rare Met. 2017;. doi:10.1007/s12598-016-0839-8.

    Article  Google Scholar 

  5. Rae CMF, Hook MS, Reed RC. The effect of TCP morphology on the development of aluminide coated superalloys. Mater Sci Eng A. 2005;396(1):231.

    Article  Google Scholar 

  6. Rae CMF, Karunaratne MSA, Small CJ, Broomfield RW, Jones CN, Reed, RC. Topologically close packed phases in an experimental rhenium-containing single crystal superalloy. In: Proceedings of the Superalloys 2000. Champion; 2000. 767.

  7. Rae CMF, Reed RC. The precipitation of topologically close-packed phases in rhenium-containing superalloys. Acta Mater. 2001;49(19):4113.

    Article  CAS  Google Scholar 

  8. Cox DC, Roebuck B, Rae CMF, Reed RC. Recrystallisation of single crystal superalloy CMSX-4. J Mater Sci Technol. 2003;19(4):440.

    Article  CAS  Google Scholar 

  9. Das DK, Murphy KS, Ma S, Pollock TM. Formation of secondary reaction zones in diffusion aluminide-coated Ni-base single-crystal superalloys containing ruthenium. Metall Mater Trans A. 2008;39(7):1647.

    Article  Google Scholar 

  10. Walston WS, Schaeffer JC, Murphy W H. A new type of microstructural instability in superalloys-SRZ. In: Proceedings of the Superalloys 1996. Champion; 1996. 9.

  11. Meng J, Jin T, Sun X, Hu ZQ. Effect of surface recrystallization on the creep rupture properties of a nickel-base single crystal superalloy. Mater Sci Eng A. 2010;527(23):6119.

    Article  Google Scholar 

  12. Zhang B, Liu C, Lu X, Tao CH, Jiang T. Effect of surface recrystallization on the creep rupture property of a single-crystal superalloy. Rare Met. 2010;29(4):413.

    Article  CAS  Google Scholar 

  13. Das DK, Gleeson B, Murphy KS, Ma S, Pollock TM. Formation of secondary reaction zone in ruthenium bearing nickel based single crystal superalloys with diffusion aluminide coatings. Mater Sci Technol. 2009;25(2):300.

    Article  CAS  Google Scholar 

  14. Murakami H, Sakai T. Anisotropy of secondary reaction zone formation in aluminized Ni-based single-crystal superalloys. Scr Mater. 2008;V59(4):428.

    Article  Google Scholar 

  15. Xie G, Wang L, Zhang J, Lou LH. Orientational dependence of recrystallization in an Ni-base single-crystal superalloy. Scr Mater. 2012;66(6):378.

    Article  CAS  Google Scholar 

  16. Zhang Y, Pint BA, Haynes JA, Wright IG. A platinum-enriched γ + γ′ two-phase bond coat on Ni-based superalloys. Surf Coat Technol. 2005;200(5):1259.

    Article  CAS  Google Scholar 

  17. He J, Zhang Z, Peng H, Gong S, Guo H. The role of Dy and Hf doping on oxidation behavior of two-phase (γ′ + β) Ni–Al alloys. Corros Sci. 2015;98:699.

    Article  CAS  Google Scholar 

  18. Haynes JA, Pint BA, Zhang Y, Wright IG. Comparison of the cyclic oxidation behavior of β-NiAl, β-NiPtAl and γ–γ′ NiPtAl coatings on various superalloys. Surf Coat Technol. 2007;202(4):730.

    Article  CAS  Google Scholar 

  19. Sun JY, Pei YL, Li SS, Zhang H, Gong SK. Improvement in ductility of high strength polycrystalline Ni-rich Ni3Al alloy produced by EB-PVD. J Alloys Compd. 2014;614(25):196.

    Article  CAS  Google Scholar 

  20. Peng H, Guo HB, He J, Gong S. Oxidation and diffusion barrier behaviors of double-layer NiCoCrAlY coatings produced by plasma activated EB-PVD. Surf Coat Technol. 2011;V205(19):4658.

    Article  Google Scholar 

  21. Wang R, Gong X, Peng H, Ma Y, Guo H. Interdiffusion behavior between NiAlHf coating and Ni-based single crystal superalloy with different crystal orientations. Appl Surf Sci. 2015;326:124.

    Article  CAS  Google Scholar 

  22. Gong X, Yang Y, Ma Y, Peng H, Guo H. Microstructures and mechanical properties of β-NiAlHf coated single crystal superalloy. Mater Sci Eng A. 2016;673:39.

    Article  CAS  Google Scholar 

  23. Cheng KY, Jo CY, Jin T, Hu ZQ. Precipitation behavior of μ phase and creep rupture in single crystal superalloy CMSX-4. J Alloys Compd. 2011;509(25):7078.

    Article  CAS  Google Scholar 

  24. Kim S, Chang YA. An interdiffusion study of a NiAl alloy using single-phase diffusion couples. Metall Mater Trans A. 2000;31(6):1519.

    Article  Google Scholar 

  25. Janssen MMP. Diffusion in the nickel-rich part of the Ni–Al system at 1000 to 1300 °C; Ni3Al layer growth, diffusion coefficients, and interface concentrations. Metall Trans. 1973;4(6):1623.

  26. Goward GW, Boone DH. Mechanisms of formation of diffusion aluminide coatings on nickel-base superalloys. Oxid Met. 1971;3(5):475.

    Article  CAS  Google Scholar 

  27. Zhang Y, Stacy JP, Pint BA. Interdiffusion behavior of Pt-diffused γ + γ′ coatings on Ni-based superalloys. Surf Coat Technol. 2008;203(5):417.

    Article  CAS  Google Scholar 

  28. Young DJ, Gleeson B. Alloy phase transformations driven by high temperature corrosion processes. Corros Sci. 2002;44(2):345.

    Article  CAS  Google Scholar 

  29. Stierle A, Formoso V, Comin F, Franchy R. Surface X-ray diffraction study on the initial oxidation of NiAl (100). Surf Sci. 2000;467(1):85.

    Article  CAS  Google Scholar 

  30. Hong HU, Yoon JG, Choi BG, Kim IS, Jo CY. On the mechanism of secondary reaction zone formation in a coated nickel-based single-crystal superalloy containing ruthenium. Scr Mater. 2013;V69(1):33.

    Article  Google Scholar 

  31. Bürgel R, Portella PD, Preuhs J. Recrystallization in single crystals of nickel base superalloys. In: Proceedings of the Superalloys 2000. Champion; 2000. 229.

  32. Dahlen M, Winberg L. The influence of γ′-precipitation on the recrystallization of a nickel base superalloy. Scr Metall. 1980;28(1):41.

    CAS  Google Scholar 

  33. Porter A, Ralph B. The recrystallization of nickel-base superalloys. J Mater Sci. 1981;16(3):707.

    Article  CAS  Google Scholar 

  34. Okazaki M, Ohtera I, Harada Y. Damage repair in CMSX-4 alloy without fatigue life reduction penalty. Metall Mater Trans A. 2004;35(2):535.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51590894, 51425102 and 51231001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Yong Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, JY., Wei, LL., Li, QS. et al. Microstructure stability of γ′ + β Ni–Al coated single-crystal superalloy N5 annealed at 1100 °C. Rare Met. 40, 693–700 (2021). https://doi.org/10.1007/s12598-017-0954-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0954-1

Keywords

Navigation