Skip to main content
Log in

Cyclic oxidation behavior of electron beam physical vapor deposition NiAlHf and NiAlHfCrSi coatings at 1150 °C

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

NiAlHf and NiAlHfCrSi coatings were deposited by electron beam physical vapor deposition (EB-PVD). The grain size and orientation of NiAlHf and NiAlHfCrSi coatings were determined by electron backscatter diffraction (EBSD). The NiAlHf coating reveals a more uniform grain size compared to NiAlHfCrSi coating, while the NiAlHfCrSi coating shows a <111> preferential orientation which is parallel to the normal direction of the surface of the coating. The cyclic oxidation behavior of NiAlHf and NiAlHfCrSi coatings at 1150 °C was investigated. Compared to NiAlHf coating, the NiAlHfCrSi coating shows improved resistance to cyclic oxidation and scale spallation. The effect of grain size and orientation on the cyclic oxidation behavior of NiAlHf and NiAlHfCrSi coatings were investigated at 1150 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Guo HB, Cui YJ, Peng H, Gong SK. Improved cyclic oxidation resistance of electron beam physical vapor deposited nano-oxide dispersed β-NiAl coatings for Hf-containing superalloy. Corros Sci. 2010;52(4):1440.

    Article  CAS  Google Scholar 

  2. Guo HB, Sun LD, Li HF, Gong SK. High temperature oxidation behavior of hafnium modified NiAl bond coat in EB-PVD thermal barrier coating system. Thin Solid Films. 2008;516(16):5732.

    Article  CAS  Google Scholar 

  3. Haynes JA, Pint BA, Zhang Y, Wright IG. Comparison of the cyclic oxidation behavior of β-NiAl, β-NiPtAl and γ/γ-NiPtAl coatings on various super alloys. Surf Coat Technol. 2007;202(4–7):730.

    Article  CAS  Google Scholar 

  4. Miracle DB. The physical and mechanical properties of NiAl. Acta Mater. 1993;41(3):649.

    Article  CAS  Google Scholar 

  5. Oquab D, Monceau D. In-situ SEM study of cavity growth during high temperature oxidation of β-(Ni, Pd)Al. Scripta Mater. 2001;44(12):2741.

    Article  CAS  Google Scholar 

  6. Schulz U, Fritscher K, Ebach-Stahl A. Cyclic behaviour of EB-PVD thermal barrier coating systems with modified bond coats. Surf Coat Technol. 2008;203(5–7):449.

    Article  CAS  Google Scholar 

  7. Hou PY, Priimak K. Interfacial segregation, pore formation, and scale adhesion on NiAl alloys. Oxid Met. 2005;63(1):113.

    Article  CAS  Google Scholar 

  8. Tolpygo VK, Clarke DR. Surface rumpling of a (Ni, Pt)Al bond coat induced by cyclic oxidation. Acta Mater. 2000;48(13):3283.

    Article  CAS  Google Scholar 

  9. Tolpygo VK, Clarke DR. Rumpling induced by thermal cycling of an overlay coating: the effect of coating thickness. Acta Mater. 2004;52(3):615.

    Article  CAS  Google Scholar 

  10. Yan K, Guo HB, Gong SK. High-temperature oxidation behavior of minor Hf doped NiAl alloy in dry and humid atmospheres. Corros Sci. 2013;75:337.

    Article  CAS  Google Scholar 

  11. Yan K, Guo HB, Gong SK. High-temperature oxidation behavior of β-NiAl with various reactive element dopants in dry and humid atmospheres. Corros Sci. 2014;83:335.

    Article  CAS  Google Scholar 

  12. Guo HB, Li DQ, Peng H, Cui YJ, Gong SK. High-temperature oxidation and hot-corrosion behaviour of EB-PVD β-NiAlDy coatings. Corros Sci. 2011;53(3):1050.

    Article  CAS  Google Scholar 

  13. Guo HB, Zhang T, Wang SX, Gong SK. Effect of Dy on oxide scale adhesion of NiAl coatings at 1200 °C. Corros Sci. 2011;53(6):2228.

    Article  CAS  Google Scholar 

  14. Lan H, Yang ZG, Xia ZX, Zhang YD, Zhang C. Effect of dysprosium addition on the cyclic oxidation behaviour of CoNiCrAlY alloy. Corros Sci. 2011;53(4):1476.

    Article  CAS  Google Scholar 

  15. Pint BA, Haynes JA, Besmann TM. Effect of Hf and Y alloy additions on aluminide coating performance. Surf Coat Technol. 2010;204(20):3287.

    Article  CAS  Google Scholar 

  16. Guo HB, Wang D, Peng H, Gong SK, Xu HB. Effect of Sm, Gd, Yb, Sc and Nd as reactive elements on oxidation behaviour of β-NiAl at 1200 °C. Corros Sci. 2014;78:369.

    Article  CAS  Google Scholar 

  17. Barrett CA. Effect of 0.1 at.% zirconium on the cyclic oxidation resistance of β-NiAl. Oxid Met. 1988;30(5):361.

    Article  CAS  Google Scholar 

  18. Leyens C, Pint BA, Wright IG. Effect of composition on the oxidation and hot corrosion resistance of NiAl doped with precious metals. Surf Coat Technol. 2000;133–134:15.

    Article  Google Scholar 

  19. Hamadi S, Bacos MP, Poulain M, Seyeux A, Maurice V, Marcus P. Oxidation resistance of a Zr-doped NiAl coating thermochemically deposited on a nickel-based superalloy. Surf Coat Technol. 2009;204(6–7):756.

    Article  CAS  Google Scholar 

  20. Lu JT, Zhu SL, Wang FH. Cyclic oxidation and hot corrosion behavior of Y/Cr-modified aluminide coatings prepared by a hybrid slurry/pack cementation process. Oxid Met. 2011;76(1):67.

    Article  CAS  Google Scholar 

  21. Pint BA, Treska M, Hobbst LW. The effect of various oxide dispersions on the phase composition and morphology of Al2O3 scales grown on β-NiA1. Oxid Met. 1997;47(1):1.

    Article  CAS  Google Scholar 

  22. Goward GW. Protective coatings-purpose, role and design. Mater Sci Technol. 1986;2(3):194.

    Article  CAS  Google Scholar 

  23. Grünling HW, Bauer R. The role of silicon in corrosion-resistant high temperature coatings. Thin Solid Films. 1982;95(1):3.

    Article  Google Scholar 

  24. Wu Y, Niu Y. Effect of silicon additions on the oxidation of a Ni-6 at.% Al alloy at 1273 K. Scripta Mater. 2005;53(11):1247.

    Article  CAS  Google Scholar 

  25. Wang R, Gong X, Peng H, Ma Y, Guo H. Interdiffusion behavior between NiAlHf coating and Ni-based single crystal superalloy with different crystal orientations. Appl Surf Sci. 2015;326:124.

    Article  CAS  Google Scholar 

  26. Zhang Y, Haynes JA, Pint BA, Wright IG, Lee WY. Martensitic transformation in CVD NiAl and (Ni, Pt)Al bond coatings. Surf Coat Technol. 2009;163–164:19.

    Google Scholar 

  27. Ning B, Weaver ML. A preliminary study of DC magnetron sputtered NiAl-Hf coatings. Surf Coat Technol. 2004;177–178:113.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Basic Research Program of China (No. 2012CB625100), the National High Technology Research and Development Program of China (No. 2012AA03A512) and the National Natural Science Foundations of China (Nos. 51231001 and 51425102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Bo Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, SJ., Song, HH., Zheng, L. et al. Cyclic oxidation behavior of electron beam physical vapor deposition NiAlHf and NiAlHfCrSi coatings at 1150 °C. Rare Met. 42, 1408–1413 (2023). https://doi.org/10.1007/s12598-016-0839-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0839-8

Keywords

Navigation