Skip to main content

Advertisement

Log in

Progress in organic photocatalysts

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Organic materials have advantages of diversity, ease of functionality, self-assembly, etc. The varied mechanistic pathways also make it conceivable to design an appropriate photocatalyst for an identical reaction. From this perspective, organic photocatalysts find wide applications in homogeneous, heterogeneous photocatalysis and photoelectrochemical (PEC) solar cells. In this review, the form of the employed organic photocatalysts ranging from molecules, supported molecules, to nanostructures or thin-film aggregates will be firstly discussed. Rational design strategies relating to each form are also provided, aiming to enhance the photoenergy conversion efficiency. Finally, the ongoing directions for future improvement of organic materials in high-quality optoelectronic devices are also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen C, Ma W, Zhao J. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem Soc Rev. 2010;39(11):4206.

    Article  Google Scholar 

  2. Maeda K, Domen K. Photocatalytic water splitting: recent progress and future challenges. J Phys Chem Lett. 2010;1(18):2655.

    Article  Google Scholar 

  3. Maeda K, Teramura K, Lu D, Takata T, Saito N, Inoue Y, Domen K. Photocatalyst releasing hydrogen from water. Nature. 2006;440(7082):295.

    Article  Google Scholar 

  4. Esswein AJ, Nocera DG. Hydrogen production by molecular photocatalysis. Chem Rev. 2007;107(10):4022.

    Article  Google Scholar 

  5. Chen X, Shen S, Guo L, Mao SS. Semiconductor-based photocatalytic hydrogen generation. Chem Rev. 2010;110(11):6503.

    Article  Google Scholar 

  6. Mills A, Davies RH, Worsley D. Water purification by semiconductor photocatalysis. Chem Soc Rev. 1993;22(6):417.

    Article  Google Scholar 

  7. Matsuoka M, Kitano M, Takeuchi M, Tsujimaru K, Anpo M, Thomas JM. Photocatalysis for new energy production: recent advances in photocatalytic water splitting reactions for hydrogen production. Catal Today. 2007;122(1):51.

    Article  Google Scholar 

  8. Fujishima A, Honda K. Photolysis-decomposition of water at the surface of an irradiated semiconductor. Nature. 1972;238(5385):37.

    Article  Google Scholar 

  9. Sajan CP, Wageh S, Al-Ghamdi AA, Yu J, Cao S. TiO2 nanosheets with exposed 001 facets for photocatalytic applications. Nano Res. 2016;9(1):3.

    Article  Google Scholar 

  10. Sheng H, Zhang H, Song W, Ji H, Ma W, Chen C, Zhao J. Activation of water in titanium dioxide photocatalysis by formation of surface hydrogen bonds: an in situ IR spectroscopy study. Angew Chem Int Ed. 2015;54(20):5905.

    Article  Google Scholar 

  11. Ma D, Yan Y, Ji H, Chen C, Zhao J. Photocatalytic activation of pyridine for addition reactions: an unconventional reaction feature between a photo-induced hole and electron on TiO2. Chem Commun. 2015;51(98):17451.

    Article  Google Scholar 

  12. Cao W, Wei B, Fu X, Ma N, Gao H, Xu L. Colored TiO2 hollow spheres for efficient water-splitting photocatalysts. RSC Adv. 2016;6(10):108969.

    Article  Google Scholar 

  13. Marin ML, Santos-Juanes L, Arques A, Amat AM, Miranda MA. Organic photocatalysts for the oxidation of pollutants and model compounds. Chem Rev. 2011;112(3):1710.

    Article  Google Scholar 

  14. Chaguetmi S, Sobti N, Decorse P, Mouton L, Nowak S, Mammeri F, Achour S, Ammar S. Visible-light photocatalytic performances of TiO2 nanobelts decorated with iron oxide nanocrystals. RSC Adv. 2016;6(115):114843.

    Article  Google Scholar 

  15. Wegher G, Viana E, Ribeiro G, Deus J. Metal-to-insulator transition near room temperature in graphene oxide and graphene oxide + TiO2 thin films. RSC Adv. 2016;6(114):112864.

    Article  Google Scholar 

  16. Fu N, Tang X, Li D. Application of in situ measurement of photo-induced variations in electron work function for in-depth understanding of the photocatalytic activity of TiO2 nanotubes. Nanotechnology. 2012;23(27):275704.

    Article  Google Scholar 

  17. Tang X, Li D. Fabrication, geometry, and mechanical properties of highly ordered TiO2 nanotubular arrays. J Phys Chem C. 2009;113(17):7107.

    Article  Google Scholar 

  18. Sakthivel S, Kisch H. Daylight photocatalysis by carbon-modified titanium dioxide. Angew Chem Int Ed. 2003;42(40):4908.

    Article  Google Scholar 

  19. Kumar SG, Devi LG. Review on modified TiO2 photocatalysis under UV/visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics. J Phys Chem A. 2011;115(46):13211.

    Article  Google Scholar 

  20. Leary R, Westwood A. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon. 2011;49(3):741.

    Article  Google Scholar 

  21. Yu MM, Wang C, Li J, Yuan L, Sun WJ. Facile fabrication of CuPp–TiO2 mesoporous composite: an excellent and robust heterostructure photocatalyst for 4-nitrophenol degradation. Appl Surf Sci. 2015;342:47.

    Article  Google Scholar 

  22. Chen D, Ye J. Hierarchical WO3 hollow shells: dendrite, sphere, dumbbell, and their photocatalytic properties. Adv Funct Mater. 2008;18(13):1922.

    Article  Google Scholar 

  23. Baeck SH, Choi KS, Jaramillo TF, Stucky GD, McFarland EW. Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films. Adv Mater. 2003;15(15):1269.

    Article  Google Scholar 

  24. Xiang Q, Meng G, Zhao H, Zhang Y, Li H, Ma W, Xu J. Au nanoparticle modified WO3 nanorods with their enhanced properties for photocatalysis and gas sensing. J Phys Chem C. 2010;114(5):2049.

    Article  Google Scholar 

  25. Zhao X, Zhu Y. Synergetic degradation of rhodamine B at a porous ZnWO4 film electrode by combined electro-oxidation and photocatalysis. Environ Sci Technol. 2006;40(10):3367.

    Article  Google Scholar 

  26. Zhang Z, Wang W, Wang L, Sun S. Enhancement of visible-light photocatalysis by coupling with narrow-band-gap semiconductor: a case study on Bi2S3/Bi2WO6. ACS Appl Mater Interfaces. 2012;4(2):593.

    Article  Google Scholar 

  27. Xi G, Yue B, Cao J, Ye J. Fe3O4/WO3 hierarchical core-shell structure: high-performance and recyclable visible-light photocatalysis. Chem Eur J. 2011;17(18):5145.

    Article  Google Scholar 

  28. Yang JL, An SJ, Park WI, Yi GC, Choi W. Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition. Adv Mater. 2004;16(18):1661.

    Article  Google Scholar 

  29. Xu X, Yi Z, Chen D, Duan X, Zhou Z, Fan X, Jiang M. Evaluation of photocatalytic production of active oxygen and decomposition of phenol in ZnO suspensions. Rare Met. 2011;30(1):188.

    Article  Google Scholar 

  30. Phuruangrat A, Dumrongrojthanath P, Yayapao O, Arin J, Thongtem S, Thongtem T. Photocatalytic activity of La-doped ZnO nanostructure materials synthesized by sonochemical method. Rare Met. 2016;35(5):390.

    Article  Google Scholar 

  31. Zheng Y, Zheng L, Zhan Y, Lin X, Zheng Q, Wei K. Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis. Inorg Chem. 2007;46(17):6980.

    Article  Google Scholar 

  32. Wang Y, Shi R, Lin J, Zhu Y. Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy Environ Sci. 2011;4(8):2922.

    Article  Google Scholar 

  33. Mclaren A, Valdes-Solis T, Li G, Tsang SC. Shape and size effects of ZnO nanocrystals on photocatalytic activity. J Am Chem Soc. 2009;131(35):12540.

    Article  Google Scholar 

  34. Zeng Y, Zhang T, Yang HB, Qiao L, Qi Q, Cao F, Zhang YY, Wang R. Preparation of Cu–Zn/ZnO core–shell nanocomposite by wire electrical explosion and precipitation process in aqueous solution and CO sensing properties. Appl Surf Sci. 2009;255(7):4045.

    Article  Google Scholar 

  35. Niu M, Huang F, Cui L, Huang P, Yu Y, Wang Y. Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of SnO2/α-Fe2O3 semiconductor nanoheterostructures. ACS Nano. 2010;4(2):681.

    Article  Google Scholar 

  36. Barroso M, Cowan AJ, Pendlebury SR, Grätzel M, Klug DR, Durrant JR. The role of cobalt phosphate in enhancing the photocatalytic activity of α-Fe2O3 toward water oxidation. J Am Chem Soc. 2011;133(38):14868.

    Article  Google Scholar 

  37. Cao SW, Zhu YJ. Hierarchically nanostructured α-Fe2O3 hollow spheres: preparation, growth mechanism, photocatalytic property, and application in water treatment. J Phys Chem C. 2008;112(16):6253.

    Article  Google Scholar 

  38. Li L, Chu Y, Liu Y, Dong L. Template-free synthesis and photocatalytic properties of novel Fe2O3 hollow spheres. J Phys Chem C. 2007;111(5):2123.

    Article  Google Scholar 

  39. Pradhan GK, Padhi DK, Parida K. Fabrication of α-Fe2O3 nanorod/RGO composite: a novel hybrid photocatalyst for phenol degradation. ACS Appl Mater Interfaces. 2013;5(18):9101.

    Article  Google Scholar 

  40. Han S, Hu L, Liang Z, Wageh S, Al-Ghamdi AA, Chen Y, Fang X. One-step hydrothermal synthesis of 2D hexagonal nanoplates of α-Fe2O3/graphene composites with enhanced photocatalytic activity. Adv Funct Mater. 2014;24(36):5719.

    Article  Google Scholar 

  41. Feng W, Fang Z, Wang B, Zhang L, Zhang Y, Yang Y, Huang M, Weng S, Liu P. Grain boundary engineering in organic–inorganic hybrid semiconductor ZnS(en)0.5 for visible-light photocatalytic hydrogen production. J Mater Chem A. 2017;5(4):1387.

    Article  Google Scholar 

  42. Jiang D, Sun Z, Jia H, Lu D, Du P. A cocatalyst-free CdS nanorod/ZnS nanoparticle composite for high-performance visible-light-driven hydrogen production from water. J Mater Chem A. 2016;4(2):675.

    Article  Google Scholar 

  43. Ham S, Kim Y, Park MJ, Hong BH, Jang DJ. Graphene quantum dots-decorated ZnS nanobelts with highly efficient photocatalytic performances. RSC Adv. 2016;6(29):24115.

    Article  Google Scholar 

  44. Fujiwara H, Hosokawa H, Murakoshi K, Wada Y, Yanagida S. Surface characteristics of ZnS nanocrystallites relating to their photocatalysis for CO2 reduction. Langmuir. 1998;14(18):5154.

    Article  Google Scholar 

  45. Hu JS, Ren LL, Guo YG, Liang HP, Cao AM, Wan LJ, Bai CL. Mass production and high photocatalytic activity of ZnS nanoporous nanoparticles. Angew Chem. 2005;117(8):1295.

    Article  Google Scholar 

  46. Tsuji I, Kato H, Kudo A. Visible-light-induced H2 evolution from an aqueous solution containing sulfide and sulfite over a ZnS–CuInS2–AgInS2 solid-solution photocatalyst. Angew Chem. 2005;117(23):3631.

    Article  Google Scholar 

  47. Chai Z, Zeng TT, Li Q, Lu LQ, Xiao WJ, Xu D. Efficient visible light-driven splitting of alcohols into hydrogen and corresponding carbonyl compounds over a Ni-modified CdS photocatalyst. J Am Chem Soc. 2016;138(32):10128.

    Article  Google Scholar 

  48. Garg P, Kumar S, Choudhuri I, Mahata A, Pathak B. Hexagonal planar CdS monolayer sheet for visible light photocatalysis. J Phys Chem C. 2016;120(13):7052.

    Article  Google Scholar 

  49. He J, Chen L, Wang F, Liu Y, Chen P, Au CT, Yin SF. CdS nanowires decorated with ultrathin MoS2 nanosheets as an efficient photocatalyst for hydrogen evolution. Chemsuschem. 2016;9(6):624.

    Article  Google Scholar 

  50. Jing D, Guo L. A novel method for the preparation of a highly stable and active CdS photocatalyst with a special surface nanostructure. J Phys Chem B. 2006;110(23):11139.

    Article  Google Scholar 

  51. Li Q, Guo B, Yu J, Ran J, Zhang B, Yan H, Gong JR. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J Am Chem Soc. 2011;133(28):10878.

    Article  Google Scholar 

  52. Chen Z, Liu S, Yang MQ, Xu YJ. Synthesis of uniform CdS nanospheres/graphene hybrid nanocomposites and their application as visible light photocatalyst for selective reduction of nitro organics in water. ACS Appl Mater Interfaces. 2013;5(10):4309.

    Article  Google Scholar 

  53. Bao N, Shen L, Takata T, Domen K. Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chem Mater. 2007;20(1):110.

    Article  Google Scholar 

  54. Li Y, Liu G, Zhang J, He X. Preparation and optoelectronic properties of TiO2 thin films codoped with iron and molybdenum. Rare Met. 2011;30(1):238.

    Article  Google Scholar 

  55. Choi H, Shin D, Yeo BC, Song T, Han SS, Park N, Kim S. Simultaneously controllable doping sites and the activity of a W–N codoped TiO2 photocatalyst. ACS Catal. 2016;6(5):2745.

    Article  Google Scholar 

  56. Leyland NS, Carroll JP, Browne J, Hinder SJ, Quilty B, Pillai SC. Highly efficient F, Cu doped TiO2 anti-bacterial visible light active photocatalytic coatings to combat hospital-acquired infections. Sci Rep. 2016;6:24770.

    Article  Google Scholar 

  57. Manfredi N, Cecconi B, Calabrese V, Minotti A, Peri F, Ruffo R, Monai M, Romero-Ocaña I, Montini T, Fornasiero P, Abbotto A. Dye-sensitized photocatalytic hydrogen production: distinct activity in a glucose derivative of a phenothiazine dye. Chem Commun. 2016;52(43):6977.

    Article  Google Scholar 

  58. Zhang X, Peng T, Song S. Recent advances in dye-sensitized semiconductor systems for photocatalytic hydrogen production. J Mater Chem A. 2016;4(7):2365.

    Article  Google Scholar 

  59. Qin J, Huo J, Zhang P, Zeng J, Wang T, Zeng H. Improving the photocatalytic hydrogen production of Ag/g-C3N4 nanocomposites by dye-sensitization under visible light irradiation. Nanoscale. 2016;8(4):2249.

    Article  Google Scholar 

  60. Kobayashi R, Kurihara K, Takashima T, Ohtani B, Irie H. A silver-inserted zinc rhodium oxide and bismuth vanadium oxide heterojunction photocatalyst for overall pure-water splitting under red light. J Mater Chem A. 2016;4(8):3061.

    Article  Google Scholar 

  61. Yu Y, Cao C, Liu H, Li P, Wei F, Jiang Y, Song W. A Bi/BiOCl heterojunction photocatalyst with enhanced electron–hole separation and excellent visible light photodegrading activity. J Mater Chem A. 2014;2(6):1677.

    Article  Google Scholar 

  62. Ansón-Casaos A, Sampaio MJ, Jarauta-Córdoba C, Martínez MT, Silva CG, Faria JL, Silva AMT. Evaluation of sol–gel TiO2 photocatalysts modified with carbon or boron compounds and crystallized in nitrogen or air atmospheres. Chem Eng J. 2015;277:11.

    Article  Google Scholar 

  63. Forrest SR, Thompson ME. Introduction: organic electronics and optoelectronics. Chem Rev. 2007;107(4):923.

    Article  Google Scholar 

  64. Zhao YS, Fu H, Peng A, Ma Y, Liao Q, Yao J. Construction and optoelectronic properties of organic one-dimensional nanostructures. Acc Chem Res. 2009;43(3):409.

    Article  Google Scholar 

  65. Kelley TW, Baude PF, Gerlach C, Ender DE, Muyres D, Haase MA, Vogel DE, Theiss SD. Recent progress in organic electronics: materials, devices, and processes. Chem Mater. 2004;16(23):4413.

    Article  Google Scholar 

  66. Zhao YS, Fu H, Peng A, Ma Y, Xiao D, Yao J. Low-dimensional nanomaterials based on small organic molecules: preparation and optoelectronic properties. Adv Mater. 2008;20(15):2859.

    Article  Google Scholar 

  67. Zang L, Che Y, Moore JS. One-dimensional self-assembly of planar π-conjugated molecules: adaptable building blocks for organic nanodevices. Acc Chem Res. 2008;41(12):1596.

    Article  Google Scholar 

  68. Li Y, Wang W, Leow WR, Zhu B, Meng F, Zheng L, Zhu J, Chen X. Optoelectronics of organic nanofibers formed by co-assembly of porphyrin and perylenediimide. Small. 2014;10(14):2776.

    Article  Google Scholar 

  69. Xie Z, Wang C, deKrafft KE, Lin W. Highly stable and porous cross-linked polymers for efficient photocatalysis. J Am Chem Soc. 2011;133(7):2056.

    Article  Google Scholar 

  70. Bonaccorso F, Sun Z, Hasan T, Ferrari A. Graphene photonics and optoelectronics. Nat Photonics. 2010;4(9):611.

    Article  Google Scholar 

  71. Wienk MM, Kroon JM, Verhees WJ, Knol J, Hummelen JC, van Hal PA, Janssen RA. Efficient methano fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew Chem. 2003;115(29):3493.

    Article  Google Scholar 

  72. Erb T, Zhokhavets U, Gobsch G, Raleva S, Stühn B, Schilinsky P, Waldauf C, Brabec CJ. Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells. Adv Funct Mater. 2005;15(7):1193.

    Article  Google Scholar 

  73. Huang C, Barlow S, Marder SR. Perylene-3,4,9,10-tetracarboxylic acid diimides: synthesis, physical properties, and use in organic electronics. J Org Chem. 2011;76(8):2386.

    Article  Google Scholar 

  74. Xu Y, Duan L, Tong L, Åkermark B, Sun L. Visible light-driven water oxidation catalyzed by a highly efficient dinuclear ruthenium complex. Chem Commun. 2010;46(35):6506.

    Article  Google Scholar 

  75. Monteiro CJ, Pereira MM, Azenha ME, Burrows HD, Serpa C, Arnaut LG, Tapia M, Sarakha M, Wong-Wah-Chung P, Navaratnam S. A comparative study of water soluble 5, 10, 15, 20-tetrakis (2,6-dichloro-3-sulfophenyl) porphyrin and its metal complexes as efficient sensitizers for photodegradation of phenols. Photochem Photobiol Sci. 2005;4(8):617.

    Article  Google Scholar 

  76. Gerdes R, Wöhrle D, Spiller W, Schneider G, Schnurpfeil G, Schulz-Ekloff G. Photo-oxidation of phenol and monochlorophenols in oxygen-saturated aqueous solutions by different photosensitizers. J Photochem Photobiol A. 1997;111(1–3):65.

    Article  Google Scholar 

  77. Rebelo SL, Melo A, Coimbra R, Azenha ME, Pereira MM, Burrows HD, Sarakha M. Photodegradation of atrazine and ametryn with visible light using water soluble porphyrins as sensitizers. Environ Chem Lett. 2007;5(1):29.

    Article  Google Scholar 

  78. Amat A, Arques A, Bossmann S, Braun A, Göb S, Miranda M. A “camel through the eye of a needle”: direct introduction of the TPP+ ion inside Y-zeolites by formal ion exchange in aqueous medium. Angew Chem Int Ed. 2003;42(14):1653.

    Article  Google Scholar 

  79. Ma W, Li J, Tao X, He J, Xu Y, Yu JC, Zhao J. Efficient degradation of organic pollutants by using dioxygen activated by resin-exchanged iron (II) bipyridine under visible irradiation. Angew Chem Int Ed. 2003;42(9):1029.

    Article  Google Scholar 

  80. Xiong Z, Xu Y, Zhu L, Zhao J. Enhanced photodegradation of 2,4,6-trichlorophenol over palladium phthalocyaninesulfonate modified organobentonite. Langmuir. 2005;21(23):10602.

    Article  Google Scholar 

  81. Woan K, Pyrgiotakis G, Sigmund W. Photocatalytic carbon-nanotube-TiO2 composites. Adv Mater. 2009;21(21):2233.

    Article  Google Scholar 

  82. Kongkanand A, Martínez Domínguez R, Kamat PV. Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons. Nano Lett. 2007;7(3):676.

    Article  Google Scholar 

  83. Zhang LL, Xiong Z, Zhao X. Pillaring chemically exfoliated graphene oxide with carbon nanotubes for photocatalytic degradation of dyes under visible light irradiation. ACS Nano. 2010;4(11):7030.

    Article  Google Scholar 

  84. Kim YK, Park H. Light-harvesting multi-walled carbon nanotubes and CdS hybrids: application to photocatalytic hydrogen production from water. Energy Environ Sci. 2011;4(3):685.

    Article  Google Scholar 

  85. Saleh TA, Gondal M, Drmosh Q, Yamani Z, Al-Yamani A. Enhancement in photocatalytic activity for acetaldehyde removal by embedding ZnO nano particles on multiwall carbon nanotubes. Chem Eng J. 2011;166(1):407.

    Article  Google Scholar 

  86. Zhuo S, Shao M, Lee ST. Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis. ACS Nano. 2012;6(2):1059.

    Article  Google Scholar 

  87. Qiu B, Xing M, Zhang J. Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J Am Chem Soc. 2014;136(16):5852.

    Article  Google Scholar 

  88. An X, Jimmy CY, Wang Y, Hu Y, Yu X, Zhang G. WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing. J Mater Chem. 2012;22(17):8525.

    Article  Google Scholar 

  89. Zhang J, Sun J, Maeda K, Domen K, Liu P, Antonietti M, Fu X, Wang X. Sulfur-mediated synthesis of carbon nitride: band-gap engineering and improved functions for photocatalysis. Energy Environ Sci. 2011;4(3):675.

    Article  Google Scholar 

  90. Wang X, Blechert S, Antonietti M. Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal. 2012;2(8):1596.

    Article  Google Scholar 

  91. Su F, Mathew SC, Möhlmann L, Antonietti M, Wang X, Blechert S. Aerobic oxidative coupling of amines by carbon nitride photocatalysis with visible light. Angew Chem Int Ed. 2011;50(3):657.

    Article  Google Scholar 

  92. Dong F, Zhao Z, Xiong T, Ni Z, Zhang W, Sun Y, Ho WK. In situ construction of g-C3N4/g-C3N4 metal-free heterojunction for enhanced visible-light photocatalysis. ACS Appl Mater Interfaces. 2013;5(21):11392.

    Article  Google Scholar 

  93. Banerjee I, Mondal D, Martin J, Kane RS. Photoactivated antimicrobial activity of carbon nanotube-porphyrin conjugates. Langmuir. 2010;26(22):17369.

    Article  Google Scholar 

  94. Ge R, Li X, Kang SZ, Qin L, Li G. Highly efficient graphene oxide/porphyrin photocatalysts for hydrogen evolution and the interfacial electron transfer. Appl Catal B Environ. 2016;187:67.

    Article  Google Scholar 

  95. Zhao G, Pang H, Liu G, Li P, Liu H, Zhang H, Shi L, Ye J. Co-porphyrin/carbon nitride hybrids for improved photocatalytic CO2 reduction under visible light. Appl Catal B Environ. 2017;200:141.

    Article  Google Scholar 

  96. Wu SC, Tan CS, Huang MH. Strong facet effects on interfacial charge transfer revealed through the examination of photocatalytic activities of various Cu2O–ZnO heterostructures. Adv Funct Mater. 2017;27(9):1604635.

    Article  Google Scholar 

  97. Zhang Y, Zhou X, Zhao Y, Liu Z, Ma D, Chen S, Zhu G, Li X. One-step solvothermal synthesis of interlaced nanoflake-assembled flower-like hierarchical Ag/Cu2O composite microspheres with enhanced visible light photocatalytic properties. RSC Adv. 2017;7(12):6957.

    Article  Google Scholar 

  98. Lou Z, Li Y, Zhu L, Niu W, Song H, Ye Z, Zhang S. The crystalline/amorphous contact in Cu2O/Ta2O5 heterostructures: increasing its sunlight-driven overall water splitting efficiency. J Mater Chem A. 2017;5(6):2732.

    Article  Google Scholar 

  99. Guo Z, Chen B, Zhang M, Mu J, Shao C, Liu Y. Zinc phthalocyanine hierarchical nanostructure with hollow interior space: solvent–thermal synthesis and high visible photocatalytic property. J Colloid Interface Sci. 2010;348(1):37.

    Article  Google Scholar 

  100. Guo P, Chen P, Ma W, Liu M. Morphology-dependent supramolecular photocatalytic performance of porphyrin nanoassemblies: from molecule to artificial supramolecular nanoantenna. J Mater Chem. 2012;22(38):20243.

    Article  Google Scholar 

  101. Zhong Y, Wang J, Zhang R, Wei W, Wang H, Lü X, Bai F, Wu H, Haddad R, Fan H. Morphology-controlled self-assembly and synthesis of photocatalytic nanocrystals. Nano Lett. 2014;14(12):7175.

    Article  Google Scholar 

  102. Chen Y, Zhang C, Zhang X, Ou X, Zhang X. One-step growth of organic single-crystal p/n nano-heterojunctions with enhanced visible-light photocatalytic activity. Chem Commun. 2013;49(80):9200.

    Article  Google Scholar 

  103. Tian Y, Martin KE, Shelnutt JY-T, Evans L, Busani T, Miller JE, Medforth CJ, Shelnutt JA. Morphological families of self-assembled porphyrin structures and their photosensitization of hydrogen generation. Chem Commun. 2011;47(21):6069.

    Article  Google Scholar 

  104. Wang Z, Li Z, Medforth CJ, Shelnutt JA. Self-assembly and self-metallization of porphyrin nanosheets. J Am Chem Soc. 2007;129(9):2440.

    Article  Google Scholar 

  105. Chen S, Jacobs DL, Xu J, Li Y, Wang C, Zang L. 1D nanofiber composites of perylene diimides for visible-light-driven hydrogen evolution from water. RSC Adv. 2014;4(89):48486.

    Article  Google Scholar 

  106. Chen Y, Huang ZH, Yue M, Kang F. Integrating porphyrin nanoparticles into a 2D graphene matrix for free-standing nanohybrid films with enhanced visible-light photocatalytic activity. Nanoscale. 2014;6(2):978.

    Article  Google Scholar 

  107. La DD, Rananaware A, Salimimarand M, Bhosale SV. Well-dispersed assembled porphyrin nanorods on graphene for the enhanced photocatalytic performance. ChemistrySelect. 2016;1(15):4430.

    Article  Google Scholar 

  108. Wang D, Pan J, Li H, Liu J, Wang Y, Kang L, Yao J. A pure organic heterostructure of μ-oxo dimeric iron (iii) porphyrin and graphitic-C3N4 for solar H2 roduction from water. J Mater Chem A. 2016;4(1):290.

    Article  Google Scholar 

  109. Abe T, Tobinai S, Taira N, Chiba J, Itoh T, Nagai K. Molecular hydrogen evolution by organic p/n bilayer film of phthalocyanine/fullerene in the entire visible-light energy region. J Phys Chem C. 2011;115(15):7701.

    Article  Google Scholar 

  110. Abe T, Tanno Y, Ebina T, Miyakushi S, Nagai K. Enhanced photoanodic output at an organic p/n bilayer in the water phase by means of the formation of whiskered phthalocyanine. ACS Appl Mater Interfaces. 2013;5(4):1248.

    Article  Google Scholar 

  111. Nagai K, Abe T, Kaneyasu Y, Yasuda Y, Kimishima I, Iyoda T, Imaya H. A full-spectrum visible-light-responsive organophotocatalyst film for removal of trimethylamine. Chemsuschem. 2011;4(6):727.

    Article  Google Scholar 

  112. Chen Y, Li A, Yue X, Wang LN, Huang ZH, Kang F, Volinsky AA. Facile fabrication of organic/inorganic nanotube heterojunction arrays for enhanced photoelectrochemical water splitting. Nanoscale. 2016;8(27):13228.

    Article  Google Scholar 

  113. Chen Y, Li A, Jin M, Wang LN, Huang ZH. Inorganic nanotube/organic nanoparticle hybrids for enhanced photoelectrochemical properties. J Mater Sci Technol. 2016;. doi:10.1016/j.jmst.2016.08.030.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51503014 and 51501008) and the State Key Laboratory for Advanced Metals and Materials (No. 2016Z-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu-Ning Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YZ., Li, WH., Li, L. et al. Progress in organic photocatalysts. Rare Met. 37, 1–12 (2018). https://doi.org/10.1007/s12598-017-0953-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0953-2

Keywords

Navigation