Skip to main content
Log in

Photocatalytic activity of La-doped ZnO nanostructure materials synthesized by sonochemical method

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

ZnO nanostructure materials doped with different La contents were synthesized by sonochemical method. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR). In this research, XRD patterns of pure ZnO and La-doped ZnO are specified as hexagonal wurtzite ZnO structure with no detection of La2O3 phase. SEM and TEM characterization revealed the flower shape of pure ZnO built-up from petals of hexagonal prisms with hexagonal pyramid tips. Upon doping with La, the flower-shaped ZnO is broken into individual 1D prism-like nanorods. Photocatalytic activities of the as-synthesized products were determined by measuring the degradation of methylene blue (MB) under ultraviolet–visible (UV) light irradiation. Among them, the 2.0 mol% La-doped ZnO shows better photocatalytic properties than any other products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li GR, Lu XH, Wang ZL, Yu XL, Tong YX. Controllable electrochemical synthesis of La3+/ZnO hierarchical nanostructures and their optical and magnetic properties. Electrochim Acta. 2010;55(11):3687.

    Article  Google Scholar 

  2. Iqbal J, Liu X, Zhu H, Wu ZB, Zhang Y, Yu D, Yu R. Raman and highly ultraviolet red-shifted near band-edge properties of LaCe-co-doped ZnO nanoparticles. Acta Mater. 2009;57(16):4790.

    Article  Google Scholar 

  3. Lee SY, Shin YH, Kim Y, Kim S, Ju S. Thermal quenching behavior of emission bands in Eu-doped ZnS nanowires. J Lumin. 2011;131(11):1336.

    Article  Google Scholar 

  4. Wang M, Huang C, Huang Z, Guo W, Huang J, He H, Wang H, Cao Y, Liu Q, Liang J. Synthesis and photoluminescence of Eu-doped ZnO microrods prepared by hydrothermal method. Opt Mater. 2009;31(10):1502.

    Article  Google Scholar 

  5. Ge C, Xie C, Hu M, Gui Y, Bai Z, Zeng D. Structural characteristics and UV-light enhanced gas sensitivity of La-doped ZnO nanoparticles. Mater Sci Eng B. 2007;141(1–2):43.

    Article  Google Scholar 

  6. Jia T, Wang W, Long F, Fu Z, Wang H, Zhang Q. Fabrication, characterization and photocatalytic activity of La-doped ZnO nanowires. J Alloys Compd. 2009;484(1–2):410.

    Article  Google Scholar 

  7. Thongtem T, Phuruangrat A, Thongtem S. Characterization of nanostructured ZnO produced by microwave irradiation. Ceram Int. 2010;36(1):257.

    Article  Google Scholar 

  8. Phuruangrat A, Thongtem T, Thongtem S. Microwave-assisted synthesis of ZnO nanostructure flowers. Mater Lett. 2009;63(13–14):1224.

    Article  Google Scholar 

  9. Anandan S, Vinu A, Lovely KLPS, Gokulakrishnan N, Srinivasu P, Mori T, Murugesan V, Sivamurugan V, Ariga K. Photocatalytic activity of La-doped ZnO for the degradation of monocrotophos in aqueous suspension. J Mol Catal A Chem. 2007;266:149–57.

    Article  Google Scholar 

  10. Yang J, Gao M, Yang L, Zhang Y, Lang J, Wang D, Wang Y, Liu H, Fan H. Low-temperature growth and optical properties of Ce-doped ZnO nanorods. Appl Surf Sci. 2008;255(1–2):2646.

    Article  Google Scholar 

  11. Chena JT, Wang J, Zhang F, Zhang GA, Wu ZG, Yan PX. The effect of La doping concentration on the properties of zinc oxide films prepared by the sol–gel method. J Cryst Growth. 2008;310(10):2627.

    Article  Google Scholar 

  12. Devi SKL, Kumar KS, Balakrishnan A. Rapid synthesis of pure and narrowly distributed Eu doped ZnO nanoparticles by solution combustion method. Mater Lett. 2011;65(1):35.

    Article  Google Scholar 

  13. Lan W, Liu Y, Zhang M, Wang B, Yan H, Wang Y. Structural and optical properties of La-doped ZnO films prepared by magnetron sputtering. Mater Lett. 2007;61(11–12):2262.

    Article  Google Scholar 

  14. Zhong M, Shan G, Li Y, Wang G, Liu Y. Synthesis and luminescence properties of Eu3+-doped ZnO nanocrystals by a hydrothermal process. Mater Chem Phys. 2007;106(2–3):305.

    Article  Google Scholar 

  15. Anandan S, Vinu A, Mori T, Gokulakrishnan N, Srinivasu P, Murugesan V, Ariga K. Photocatalytic degradation of 2,4,6-trichlorophenol using lanthanum doped ZnO in aqueous suspension. Catal Commun. 2007;8(9):1377.

    Article  Google Scholar 

  16. Faisal M, Ismail AA, Ibrahim AA, Bouzid H, Al-Sayari SA. Highly efficient photocatalyst based on Ce doped ZnO nanorods: controllable synthesis and enhanced photocatalytic activity. Chem Eng J. 2013;229:225.

    Article  Google Scholar 

  17. Phuruangrat A, Thongtem T, Kuntalue B, Thongtem S. Microwave-assisted synthesis and characterization of rose-like and flower-like zinc oxide nano structures. J Ovonic Res. 2011;7(6):107.

    Google Scholar 

  18. Yayapao O, Thongtem S, Phuruangrat A, Thongtem T. Sonochemical synthesis, photocatalysis and photonic properties of 3 % Ce-doped ZnO nanoneedles. Ceram Int. 2013;39(S1):S563.

    Article  Google Scholar 

  19. Yang L, Tang Y, Hu A, Chen X, Liang K, Zhang L. Raman scattering and luminescence study on arrays of ZnO doped with Tb3+. Phys B. 2008;403(13–16):2230.

    Article  Google Scholar 

  20. Umar A, Al-Hajry A, Hahn YB, Kim DH. Rapid synthesis and dye-sensitized solar cell applications of hexagonal-shaped ZnO nanorods. Electrochim Acta. 2009;54(22):5358.

    Article  Google Scholar 

  21. Lee GH, Kim MS. Synthesis of bottle-shaped ZnO particles tthrough the oxidation of a mixture of Al-Zn-Au. Mater Trans. 2009;50(8):2121.

    Article  Google Scholar 

  22. Wei H, Wu Y, Lun N, Hu C. Hydrothermal synthesis and characterization of ZnO nanorods. Mater Sci Eng A. 2005;393(1–2):80.

    Article  Google Scholar 

  23. Kajbafvala A, Ghorbani H, Paravar A, Samberg JP, Kajbafvala E, Sadrnezhaad SK. Effects of morphology on photocatalytic performance of zinc oxide nanostructures synthesized by rapid microwave irradiation methods. Superlattices Microstruct. 2012;51(4):512.

    Article  Google Scholar 

  24. Zeng JH, Jin BB, Wang YF. Facet enhanced photocatalytic effect with uniform single-crystalline zinc oxide nanodisks. Chem Phys Lett. 2009;472(1–3):90.

    Article  Google Scholar 

  25. Boppella R, Anjaneyulu K, Basak P, Manorama SV. Facile synthesis of face oriented ZnO crystals: tunable polar facets and shape induced enhanced photocatalytic performance. J Phys Chem C. 2013;117(9):4597.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Research University Project for Chiang Mai University (CMU) from the Thailand’s Office of the Higher Education Commission, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anukorn Phuruangrat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phuruangrat, A., Dumrongrojthanath, P., Yayapao, O. et al. Photocatalytic activity of La-doped ZnO nanostructure materials synthesized by sonochemical method. Rare Met. 35, 390–395 (2016). https://doi.org/10.1007/s12598-015-0508-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0508-3

Keywords

Navigation