Skip to main content

Advertisement

Log in

Facile fabrication of oxide layer for si anode with enhanced lithium storage performances via plasma oxidation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Fabrication of oxide layer over Si-based anode materials is recognized as a promising strategy to enhance the cycling performance of Si-based anodes through alleviating the severe volume variation during the lithiation/delithiation processes. In this work, an extremely simple and green plasma oxidation strategy is exploited to fabricate SiOx layer on the surface of Si nanoparticles. The obtained Si@SiOx materials deliver significant enhanced cycling stability (1201 mAh g−1 at 200th cycle) and promoted initial coulombic efficiency (89.96%) for application in lithium ions batteries (LIBs). The fabricated SiOx layer, which can not only serve as mechanical protect coating to buffer the huge volume change of Si, but also improve the electrolyte wettability of anode to facilitate the contact between electrolyte and electrode, thus promoting the transmission of lithium ions in the electrode. The presented work provides a simple and energy-efficiency and absolute green method to modify the surface of nanoparticles has been inspired preliminarily, and the prepared Si@SiOx materials exhibit promising electrochemical performances could be applied in the energy storage field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature 414(6861), 359–367 (2001)

    Article  CAS  Google Scholar 

  2. Y.M. Sun, N.A. Liu, Y. Cui, Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nature Energy 1, 16071 (2016)

    Article  CAS  Google Scholar 

  3. M.V. Reddy, G.V.S. Rao, B.V.R. Chowdari, Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 113(7), 5364–5457 (2013)

    Article  CAS  Google Scholar 

  4. X.X. Zuo, J. Zhu, P. Muller-Buschbaum, Y.J. Cheng, Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31, 113–143 (2017)

    Article  CAS  Google Scholar 

  5. M. Ashuri, Q.R. He, L.L. Shaw, Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale 8(1), 74–103 (2016)

    Article  CAS  Google Scholar 

  6. K. Feng, M. Li, W.W. Liu, A.G. Kashkooli, X.C. Xiao, M. Cai, Z.W. Chen, Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications. Small 14(8), 1702737 (2018)

    Article  Google Scholar 

  7. M. Gu, Y. He, J.M. Zheng, C.M. Wang, Nanoscale silicon as anode for Li-ion batteries: the fundamentals, promises, and challenges. Nano Energy 17, 366–383 (2015)

    Article  CAS  Google Scholar 

  8. S.D. Beattie, M.J. Loveridge, M.J. Lain, S. Ferrari, B.J. Polzin, R. Bhagat, R. Dashwood, Understanding capacity fade in silicon based electrodes for lithium-ion batteries using three electrode cells and upper cut-off voltage studies. J. Power Sources 302, 426–430 (2016)

    Article  CAS  Google Scholar 

  9. H. Wu, Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7(5), 414–429 (2012)

    Article  CAS  Google Scholar 

  10. X. Su, Q.L. Wu, J.C. Li, X.C. Xiao, A. Lott, W.Q. Lu, B.W. Sheldon, J. Wu, Silicon-based nanomaterials for lithium-ion batteries: a review. Adv. Energy Mater. 4(1), 1300882 (2014)

    Article  Google Scholar 

  11. Z.B. Sun, X.D. Wang, X.P. Li, M.S. Zhao, Y. Li, Y.M. Zhu, X.P. Song, Electrochemical properties of melt-spun Al-Si-Mn alloy anodes for lithium-ion batteries. J. Power Sources 182(1), 353–358 (2008)

    Article  CAS  Google Scholar 

  12. L.Y. Beaulieu, K.C. Hewitt, R.L. Turner, A. Bonakdarpour, A.A. Abdo, L. Christensen, K.W. Eberman, J.L. Krause, J.R. Dahn, The electrochemical reaction of Li with amorphous Si-Sn alloys. J. Electrochem. Soc. 150(2), A149–A156 (2003)

    Article  CAS  Google Scholar 

  13. G.R. Zheng, Y.X. Xiang, L.F. Xu, H. Luo, B.L. Wang, Y. Liu, X. Han, W.M. Zhao, S.J. Chen, H.L. Chen, Q.B. Zhang, T. Zhu, Y. Yang, Controlling surface oxides in Si/C nanocomposite anodes for high-performance Li-ion batteries. Adv. Energy Mater. 8(29), 1801718 (2018)

    Article  Google Scholar 

  14. Y. Yao, N. Liu, M.T. McDowell, M. Pasta, Y. Cui, Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings. Energy Environ. Sci. 5(7), 7927–7930 (2012)

    Article  CAS  Google Scholar 

  15. R. Yi, F. Dai, M.L. Gordin, S.R. Chen, D.H. Wang, Micro-sized Si-C composite with interconnected nanoscale building blocks as high-performance anodes for practical application in lithium-ion batteries. Adv Energy Mater 3(3), 295–300 (2013)

    Article  CAS  Google Scholar 

  16. M.L. Terranova, S. Orlanducci, E. Tamburri, V. Guglielmotti, M. Rossi, Si/C hybrid nanostructures for Li-ion anodes: an overview. J. Power Sources 246, 167–177 (2014)

    Article  CAS  Google Scholar 

  17. G.X. Wang, J.H. Ahn, J. Yao, S. Bewlay, H.K. Liu, Nanostructured Si-C composite anodes for lithium-ion batteries. Electrochem. Commun. 6(7), 689–692 (2004)

    Article  CAS  Google Scholar 

  18. Y.H. Xu, G.P. Yin, Y.L. Ma, P.J. Zuo, X.Q. Cheng, Nanosized core/shell silicon@carbon anode material for lithium ion batteries with polyvinylidene fluoride as carbon source. J. Mater. Chem. 20(16), 3216–3220 (2010)

    Article  CAS  Google Scholar 

  19. S. Sim, P. Oh, S. Park, J. Cho, Critical thickness of SiO2 coating layer on core@shell bulk@nanowire Si anode materials for Li-ion batteries. Adv. Mater. 25(32), 4498–4503 (2013)

    Article  CAS  Google Scholar 

  20. R.S. Fu, K.L. Zhang, R.P. Zaccaria, H.R. Huang, Y.G. Xia, Z.P. Liu, Two-dimensional silicon suboxides nanostructures with Si nanodomains confined in amorphous SiO2 derived from siloxene as high performance anode for Li-ion batteries. Nano Energy 39, 546–553 (2017)

    Article  CAS  Google Scholar 

  21. X. Bai, Y. Yu, H.H. Kung, B. Wang, J. Jiang, Si@SiOx/graphene hydrogel composite anode for lithium-ion battery. J. Power Sources 306, 42–48 (2016)

    Article  CAS  Google Scholar 

  22. A. Yamano, M. Morishita, M. Yanagida, T. Sakai, High-capacity li-ion batteries using SiO-Si composite anode and Li-rich layered oxide cathode: cell design and its safety evaluation. J. Electrochem. Soc. 162(9), A1730–A1737 (2015)

    Article  CAS  Google Scholar 

  23. Z.H. Liu, Q. Yu, Y.L. Zhao, R.H. He, M. Xu, S.H. Feng, S.D. Li, L. Zhou, L.Q. Mai, Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 48(1), 285–309 (2019)

    Article  CAS  Google Scholar 

  24. Y. Chen, L. Liu, J. Xiong, T. Yang, Y. Qin, C. Yan, Porous Si nanowires from cheap metallurgical silicon stabilized by a surface oxide layer for lithium ion batteries. Adv. Func. Mater. 25(43), 6701–6709 (2015)

    Article  CAS  Google Scholar 

  25. Q. Liu, Z. Cui, R.J. Zou, J.H. Zhang, K.B. Xu, J.Q. Hu, Surface coating constraint induced anisotropic swelling of silicon in Si-Void@SiOx nanowire anode for lithium-ion batteries. Small 13, 13 (2017)

    CAS  Google Scholar 

  26. Y.C. Zhu, W. Hu, J.B. Zhou, W.L. Cai, Y. Lu, J.W. Liang, X.N. Li, S.S. Zhu, Q.Q. Fu, Y.T. Qian, Prelithiated surface oxide layer enabled high-performance Si anode for lithium storage. ACS Appl. Mater. Interfaces 11(20), 18305–18312 (2019)

    Article  CAS  Google Scholar 

  27. S.T. Guo, H. Li, Y.Q. Li, Y. Han, K.B. Chen, G.Z. Xu, Y.J. Zhu, X.L. Hu, SiO2-enhanced structural stability and strong adhesion with a new binder of Konjac Glucomannan enables stable cycling of silicon anodes for lithium-ion batteries. Adv. Energy Mater. 8(24), 1800434 (2018)

    Article  Google Scholar 

  28. K. Kong, G. Xu, C. Jin, P. Ouyang, X. Yang, B. Liu, Z. Yue, X. Li, F. Sun, H. Huang, L. Zhou, Low-cost SiOx-coated Si particles prepared via wet oxidation as anode materials for lithium-ion batteries with excellent cycling stability. Appl. Phys. A 125(6), 444 (2019)

    Article  Google Scholar 

  29. E. Park, H. Yoo, J. Lee, M.S. Park, Y.J. Kim, H. Kim, Dual-size silicon nanocrystal-embedded SiOx nanocomposite as a high-capacity lithium storage material. ACS Nano 9(7), 7690–7696 (2015)

    Article  CAS  Google Scholar 

  30. J. Hu, L. Fu, R. Rajagopalan, Q. Zhang, J. Luan, H. Zhang, Y. Tang, Z. Peng, H. Wang, Nitrogen plasma-treated core-Bishell Si@SiOx@TiO2-delta: nanoparticles with significantly improved lithium storage performance. ACS Appl. Mater. Interfaces 11(31), 27658–27666 (2019)

    Article  CAS  Google Scholar 

  31. Z. Sun, X.F. Song, P. Zhang, L. Gao, Controlled synthesis of yolk-mesoporous shell Si@SiO2 nanohybrid designed for high performance Li ion battery. Rsc Adv. 4(40), 20814–20820 (2014)

    Article  CAS  Google Scholar 

  32. Y.-K. Park, M. Boyer, G.S. Hwang, J.-W. Lee, Synthesis of Si/SiOx from talc and its characteristics as an anode for lithium ion batteries. J. Electroanal. Chem. 833, 552–559 (2019)

    Article  CAS  Google Scholar 

  33. S. Dou, L. Tao, R.L. Wang, S. El Hankari, R. Chen, S.Y. Wang, Plasma-assisted synthesis and surface modification of electrode materials for renewable energy. Adv. Mater. 30(21), 1705850 (2018)

    Article  Google Scholar 

  34. U. Kogelschatz, Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem. Plasma Process. 23(1), 1–46 (2003)

    Article  CAS  Google Scholar 

  35. R. Burlica, I.D. Dirlau, D. Astanei, Non-thermal plasma mini-reactors for water treatment. Environ. Eng. Manag. J. 18(8), 1799–1807 (2019)

    Article  CAS  Google Scholar 

  36. L. Chandana, P.M.K. Reddy, C. Subrahmanyam, Atmospheric pressure non-thermal plasma jet for the degradation of methylene blue in aqueous medium. Chem. Eng. J. 282, 116–122 (2015)

    Article  CAS  Google Scholar 

  37. S.L. Yao, E. Suzuki, A. Nakayama, Oxidation of activated carbon and methane using a high-frequency pulsed plasma. J. Hazard. Mater. 83(3), 237–242 (2001)

    Article  CAS  Google Scholar 

  38. Q.T. Guo, P. With, Y. Liu, R. Glaser, C.J. Liu, Carbon template removal by dielectric-barrier discharge plasma for the preparation of zirconia. Catal. Today 211, 156–161 (2013)

    Article  CAS  Google Scholar 

  39. Z.Y. Mao, J.J. Chen, G.H. Li, D.J. Wang, Z.H. Yuan, B.D. Fahlman, Damage-free removal of residual carbon in a dielectric barrier discharge (DBD) plasma for carbothermal-synthesized materials. Chem. Mater. 28(15), 5560–5566 (2016)

    Article  CAS  Google Scholar 

  40. X.T. Guo, Y.Z. Zhang, F. Zhang, Q. Li, D.H. Anjum, H.F. Liang, Y. Liu, C.S. Liu, H.N. Alshareef, H. Pang, A novel strategy for the synthesis of highly stable ternary SiOx composites for Li-ion-battery anodes. J. Mater. Chem. A 7(26), 15969–15974 (2019)

    Article  CAS  Google Scholar 

  41. W. He, Y.J. Liang, H.J. Tian, S.L. Zhang, Z. Meng, W.Q. Han, A facile in situ synthesis of nanocrystal-FeSi-embedded Si/SiOx anode for long-cycle-life lithium ion batteries. Energy Storage Mater. 8, 119–126 (2017)

    Article  Google Scholar 

  42. Q. Xu, J.K. Sun, Z.L. Yu, Y.X. Yin, S. Xin, S.H. Yu, Y.G. Guo, SiOx encapsulated in graphene bubble film: an ultrastable Li-ion battery anode. Adv. Mater. 30(25), 6 (2018)

    Article  Google Scholar 

  43. C. Smit, R.A.C.M.M. van Swaaij, H. Donker, A.M.H.N. Petit, W.M.M. Kessels, M.C.M. van de Sanden, Determining the material structure of microcrystalline silicon from Raman spectra. J. Appl. Phys. 94(5), 3582–3588 (2003)

    Article  CAS  Google Scholar 

  44. G.Z. Yue, J.D. Lorentzen, J. Lin, D.X. Han, Q. Wang, Photoluminescence and Raman studies in thin-film materials: transition from amorphous to microcrystalline silicon. Appl. Phys. Lett. 75(4), 492–494 (1999)

    Article  CAS  Google Scholar 

  45. S.Y. Jin, J. Manuel, X. Zhao, W.H. Park, J.H. Ahn, Surface-modified polyethylene separator via oxygen plasma treatment for lithium ion battery. J. Ind. Eng. Chem. 45, 15–21 (2017)

    Article  CAS  Google Scholar 

  46. C. Li, T.F. Shi, D.C. Li, H. Yoshitake, H.Y. Wang, Effect of surface modification on electrochemical performance of nano-sized Si as an anode material for Li-ion batteries. Rsc Adv. 6(41), 34715–34723 (2016)

    Article  CAS  Google Scholar 

  47. S. Perez-Beltran, G.E. Ramirez-Caballero, P.B. Balbuena, First-principles calculations of lithiation of a hydroxylated surface of amorphous silicon dioxide. J. Phys. Chem. C 119(29), 16424–16431 (2015)

    Article  CAS  Google Scholar 

  48. H.U. Lee, K. Ahn, S.Y. Jeong, C.R. Cho, J.P. Kim, J.S. Bae, H.G. Kim, S.H. Kwon, H.W. Lee, Enhanced photocatalytic activity of TiO2 nanobarbed fibers treated with atmospheric pressure plasma using O-2 gas. Appl. Phys. Lett. 97(22), 1478 (2010)

    Article  Google Scholar 

  49. D.S. Wang, M.X. Gao, H.G. Pan, J.H. Wang, Y.F. Liu, High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization. J. Power Sources 256, 190–199 (2014)

    Article  CAS  Google Scholar 

  50. X.Z. Dong, C.X. Lu, L.Y. Wang, P.C. Zhou, D.H. Li, L. Wang, G.P. Wu, Y.H. Li, Polyacrylonitrile-based turbostratic graphite-like carbon wrapped silicon nanoparticles: a new-type anode material for lithium ion battery. Rsc Adv. 6(16), 12737–12743 (2016)

    Article  CAS  Google Scholar 

  51. X.K. Huang, S. Mao, J.B. Chang, P.B. Hallac, C.R. Fell, Y.T. Luo, B. Metz, J.W. Jiang, J.H. Chen, Improving cyclic performance of Si anode for lithium-ion batteries by forming an intermetallic skin. Rsc Adv. 5(48), 38660–38664 (2015)

    Article  CAS  Google Scholar 

  52. X.Y. Wang, H. Hao, J.L. Liu, T. Huang, A.S. Yu, A novel method for preparation of macroposous lithium nickel manganese oxygen as cathode material for lithium ion batteries. Electrochim. Acta 56(11), 4065–4069 (2011)

    Article  CAS  Google Scholar 

  53. Tang, Y. H.; Chen, J. J.; Wang, X.; Wang, X. X.; Zhao, Y.; Mao, Z. Y.; Wang, D. J., Fabrication of highly N-Doped graphene-like carbon templated from g-C3N4 nanosheets as promising Li-ions battery anode. Electrochimica Acta 2019, 324.

  54. Z.L. Jian, Z.Y. Xing, C. Bommier, Z.F. Li, X.L. Ji, Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 6(3), 1501874 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support by the National Natural Science Foundation of China (No. 51777138), Natural Science Foundation of Tianjin City (Nos. 18JCZDJC99700, 18JCYBJC87400 and 18JCQNJC73900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Mao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Chen, J., Mao, Z. et al. Facile fabrication of oxide layer for si anode with enhanced lithium storage performances via plasma oxidation. J Mater Sci: Mater Electron 32, 2158–2171 (2021). https://doi.org/10.1007/s10854-020-04981-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04981-5

Navigation