Skip to main content
Log in

Self-etching Ni–Co hydroxides@Ni–Cu nanowire arrays with enhancing ultrahigh areal capacitance for flexible thin-film supercapacitors

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Flexible thin-film supercapacitors with high specific capacitance are highly desirable for modern wearable or micro-sized electrical and electronic applications. In this contribution, Ni–Co hydroxides (NCH) nanosheets were deposited on top of Ni–Cu alloy (NCA) nanowire arrays forming a freestanding thin-film composite electrode with hierarchical structure for supercapacitors. During electrochemical cycling, the dissolution of Cu into Cu ions will create more active sites on NCA, and the re-deposited copper oxide can be coated onto NCH, giving rise to substantial increase in specific capacitance with cycling. Meanwhile, NCA and NCH have excellent conductivity, thus leading to excellent rate performance. This flexible thin-film electrode delivers an ultrahigh initial specific capacitance of 0.63 F·cm−2 (or 781.3 F·cm−3). During charge–discharge cycles, the specific capacitance can increase up to 1.18 F·cm−2 (or 1475 F·cm−3) along with the “self-etching” process. The electrode presents a better specific capacitance and rate capability compared with previously reported flexible thin-film electrode, and this novel design of etching technique may expand to other binary or ternary materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater. 2008;7(11):845.

    Article  Google Scholar 

  2. Wang GP, Zhang L, Zhang JJ. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev. 2012;41(2):797.

    Article  Google Scholar 

  3. Lu XH, Yu MH, Wang GM, Tong YX, Li Y. Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ Sci. 2014;7(7):2160.

    Article  Google Scholar 

  4. Beidaghi M, Gogotsi Y. Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors. Energy Environ Sci. 2014;7(3):867.

    Article  Google Scholar 

  5. El-Kady MF, Kaner RB. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nat Commun. 2013;4:1475.

    Article  Google Scholar 

  6. Tang Z, Tang CH, Gong H. A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes. Adv Funct Mater. 2012;22(6):1272.

    Article  Google Scholar 

  7. Xiao JW, Wan L, Yang SH, Xiao F, Wang S. Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 2014;14(2):831.

    Article  Google Scholar 

  8. Xie JF, Sun X, Zhang N, Xu K, Zhou M, Xie Y. Layer-by-layer β-Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance. Nano Energy. 2013;2(1):65.

    Article  Google Scholar 

  9. Su ZJ, Yang C, Xie BH, Lin ZY, Zhang ZX, Liu JP, Li BH, Kang FY, Wong CP. Scalable fabrication of MnO2 nanostructure deposited on free-standing Ni nanocone arrays for ultrathin, flexible, high-performance micro-supercapacitor. Energy Environ Sci. 2014;7(8):2652.

    Article  Google Scholar 

  10. Taberna PL, Mitra S, Poizot P, Simon P, Tarascon JM. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater. 2006;5(7):567.

    Article  Google Scholar 

  11. Huang L, Chen DC, Ding Y, Feng S, Wang ZL, Liu ML. Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 2013;13(7):3135.

    Article  Google Scholar 

  12. Trang NT, Ngoc HV, Lingappan N, Kang DJ. A comparative study of supercapacitive performances of nickel cobalt layered double hydroxides coated on ZnO nanostructured arrays on textile fibre as electrodes for wearable energy storage devices. Nanoscale. 2014;6(4):2434.

    Article  Google Scholar 

  13. Salunkhe RR, Jang K, Lee SW, Ahn H. Aligned nickel-cobalt hydroxide nanorod arrays for electrochemical pseudocapacitor applications. RSC Adv. 2012;2(8):3190.

    Article  Google Scholar 

  14. Li HB, Yu MH, Wang FX, Liu P, Liang Y, Xiao J, Wang CX, Tong YX, Yang GW. Amorphous nickel hydroxide nanospheres with ultrahigh capacitance and energy density as electrochemical pseudocapacitor materials. Nat Commun. 2013;4:1894.

    Article  Google Scholar 

  15. Song Y, Cai X, Xu XX, Liu XX. Integration of nickel–cobalt double hydroxide nanosheets and polypyrrole films with functionalized partially exfoliated graphite for asymmetric supercapacitors with improved rate capability. J Mater Chem A. 2015;3(28):14712.

    Article  Google Scholar 

  16. Chang IC, Chen TT, Yang MH, Chiu HT, Lee CY. Self-powered electrochemical deposition of Cu@Ni(OH)2 nanobelts for high performance pseudocapacitors. J Mater Chem A. 2014;2(27):10370.

    Article  Google Scholar 

  17. Li HB, Gao YQ, Wang CX, Yang GW. A simple electrochemical route to access amorphous mixed-metal hydroxides for supercapacitor electrode materials. Adv Energy Mater. 2015;5(6):1401767.

    Article  Google Scholar 

  18. Yang J, Yu C, Fan XM, Qiu JS. 3D architecture materials made of NiCoAl-LDH nanoplates coupled with NiCo-carbonate hydroxide nanowires grown on flexible graphite paper for asymmetric supercapacitors. Adv Energy Mater. 2014;4(18):1400761.

    Article  Google Scholar 

  19. Lien CH, Hu CC, Hsu CT, Wong DSH. High-performance asymmetric supercapacitor consisting of Ni–Co–Cu oxy-hydroxide nanosheets and activated carbon. Electrochem Commun. 2013;34:323.

    Article  Google Scholar 

  20. Masuda H, Fukuda K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science. 1995;268(5216):1466.

    Article  Google Scholar 

  21. Ai ZH, Zhang LZ, Lee SC, Ho WK. Interfacial hydrothermal synthesis of Cu@Cu2O core–shell microspheres with enhanced visible-light-driven photocatalytic activity. J Phys Chem C. 2009;113(49):20896.

    Article  Google Scholar 

  22. Huang Q, Kang F, Liu H, Li Q, Xiao XD. Highly aligned Cu2O/CuO/TiO2core/shell nanowire arrays as photocathodes for water photoelectrolysis. J Mater Chem A. 2013;1(7):2418.

    Article  Google Scholar 

  23. Kirsch PD, Ekerdt JG. Chemical and thermal reduction of thin films of copper (II) oxide and copper (I) oxide. J Appl Phys. 2001;90(8):4256.

    Article  Google Scholar 

  24. Chen JZ, Xu JL, Zhou S, Zhao N, Wong CP. Amorphous nanostructured FeOOH and Co–Ni double hydroxides for high-performance aqueous asymmetric supercapacitors. Nano Energy. 2016;21:145.

    Article  Google Scholar 

  25. Su YZ, Xiao K, Li N, Liu ZQ, Qiao SZ. Amorphous Ni(OH)2@ three-dimensional Ni core–shell nanostructures for high capacitance pseudocapacitors and asymmetric supercapacitors. J Mater Chem A. 2014;2(34):13845.

    Article  Google Scholar 

  26. Zhu JX, Huang L, Xiao YX, Shen L, Chen Q, Shi WZ. Hydrogenated CoO x nanowire@Ni(OH)2 nanosheet core-shell nanostructures for high-performance asymmetric supercapacitors. Nanoscale. 2014;6(12):6772.

    Article  Google Scholar 

  27. Zou ZB, Xiong XB, Ma J, Zeng XR, Huang T, Li JJ, Li B. In situ two-step electrochemical preparation of fluoride-free nickel-based compound film on nickel plate for supercapacitors. Rare Met. 2015;35(12):930.

    Article  Google Scholar 

  28. Yang J, Liu H, Martens WN, Frost RL. Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs. J Phys Chem C. 2009;114(1):111.

    Article  Google Scholar 

  29. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci. 2011;257(7):2717.

    Article  Google Scholar 

  30. Lee SW, Lee YS, Heo J, Siah SC, Chua D, Brandt RE, Kim SB, Mailoa JP, Buonassisi T, Gordon RG. Improved Cu2O-based solar cells using atomic layer deposition to control the Cu oxidation state at the p-n junction. Adv Energy Mater. 2014;4(11):1301916.

    Article  Google Scholar 

  31. Jung S, Jeon S, Yong K. Fabrication and characterization of flower-like CuO–ZnO heterostructure nanowire arrays by photochemical deposition. Nanotechnology. 2011;22(1):015606.

    Article  Google Scholar 

  32. Xiong ZY, Liao CL, Han WH, Wang XG. Mechanically tough large-area hierarchical porous graphene films for high-performance flexible supercapacitor applications. Adv Mater. 2015;27(30):4469.

    Article  Google Scholar 

  33. Liu JP, Jiang J, Cheng CW, Li HX, Zhang JX, Gong H, Fan HJ. Co3O4 Nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv Mater. 2011;23(18):2076.

    Article  Google Scholar 

  34. Liu JP, Jiang J, Bosman M, Fan HJ. Three-dimensional tubular arrays of MnO2–NiO nanoflakes with high areal pseudocapacitance. J Mater Chem. 2012;22(6):2419.

    Article  Google Scholar 

  35. Yu Z, Duong B, Abbitt D, Thomas J. Highly ordered MnO2 nanopillars for enhanced supercapacitor performance. Adv Mater. 2013;25(24):3302.

    Article  Google Scholar 

  36. Dong XY, Wang L, Wang D, Li C, Jin J. Layer-by-layer engineered Co–Al hydroxide nanosheets/graphene multilayer films as flexible electrode for supercapacitor. Langmuir. 2012;28(1):293.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Basic Research Program of China (No. 2015CB654603), the National Natural Science Foundation of China (No. 51572141, 51532003), Beijing Nova Program (No. XX2013037) and the Research fund of Science and Technology in Shenzhen (No. JSGG20150331155519130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, P., Shen, Y., Song, Y. et al. Self-etching Ni–Co hydroxides@Ni–Cu nanowire arrays with enhancing ultrahigh areal capacitance for flexible thin-film supercapacitors. Rare Met. 36, 691–697 (2017). https://doi.org/10.1007/s12598-017-0884-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0884-y

Keywords

Navigation