Skip to main content
Log in

A sorbent of expanded rice husk powder for removal of uranyl ion from aqueous solution

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A novel sorbent for the removal of uranyl ion was prepared by expanded rice husk powder. Batch adsorption experiments were performed on factors of pH, temperature, initial uranyl ion concentration, adsorbent dosage and contact time to evaluate the adsorption capacity. The results show that the saturation adsorption capacity is 5.7 mg·g−1 using expanded rice husk powder treating uranyl ion aqueous solution (80 mg·L−1) for 24 h at 25 °C with initial pH 3. Adsorption process could be well described by Langmuir isotherm model. The adsorption kinetic data are fitted well with pseudo-second-order model. The results obtained show that expanded rice husk adsorbent is a promising adsorbent for the removal of uranium from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Liu Y, Cao X, Hua R. Selective adsorption of uranyl ion on ion-imprinted chitosan/PVA cross-linked hydrogel. Hydrometallurgy. 2010;104(2):150.

    Article  Google Scholar 

  2. Hritcu D, Humelnicu D, Dodi G. Magnetic chitosan composite particles: evaluation of thorium and uranyl ion adsorption from aqueous solution. Carbohydr Polym. 2012;87(2):1185.

    Article  Google Scholar 

  3. Hiemstra T, Riemsdijk WHV, Rossberg A, Ulrich K. A surface structural model for ferrihydrite: adsorption of uranyl and carbonate. Geochimicaet Cosmochimica Acta. 2009;73(15):4437.

    Article  Google Scholar 

  4. Gao Y, Yuan Y, Li L, Xu W. Removal of aqueous uranyl ions by magnetic functionalized carboxymethylcellulose and adsorption property investigation. J Nucl Mater. 2014;453(1):82.

    Article  Google Scholar 

  5. Wang J, Peng R, Yang J, Liu Y. Preparation of ethylenediamine-modified magnetic chitosan complex for adsorption of uranyl ions. Carbohydr Polym. 2011;84(3):1169.

    Article  Google Scholar 

  6. Campos B, Aguilar-Carrillo J, Algarra M. Adsorption of uranyl ions on kaolinite, montmorillonite, humic acid and composite clay material. Appl Clay Sci. 2013;85(1):53.

    Article  Google Scholar 

  7. Guerra D, Oliveira SP, Silva EM, Batista AC. Adsorption of uranyl on beryl and tourmaline; kinetics and thermodynamic investigation. Int J Miner Process. 2012;102(5):25.

    Article  Google Scholar 

  8. Tang YL, Guan XH, Wang JM. Fluoride adsorption onto granular ferric hydroxide: effects of ionic strength, pH, surface loading, and major co-existing anions. J Hazard Mater. 2008;171(1):774.

    Google Scholar 

  9. Bhatnagar A, Kumar E, Sillanpaa M. Fluoride removal from water by adsorption—a review. Chem Eng J. 2011;171(3):811.

    Article  Google Scholar 

  10. Li L, Ding X, Hu N. Adsorption of U(VI) ions from low concentration uranium solution by thermally activated sodium feldspar. J Radioanal Nucl Chem. 2014;299(1):681.

    Article  Google Scholar 

  11. Shao DD, Hou GS, Li JX. PANI/GO as a super adsorbent for the selective adsorption of uranium(VI). Chem Eng J. 2014;255(7):604.

    Article  Google Scholar 

  12. Bayramoglu G, Akbulut A, Arica MY. Study of polyethyleneimine and a amidoxime-functionalized hybrid biomass of spirulina(arthrospira) platensis for adsorption of uranium(VI) ion. Environ Sci Pollut Res. 2015;22(22):17998.

    Article  Google Scholar 

  13. Parab H, Joshi S, Shenoy N, Verma R, Lali A, Sudersanan M. Uranium removal from aqueous solution by coir pith: equilibrium and kinetic studies. Bioresour Technol. 2005;96(11):1241.

    Article  Google Scholar 

  14. Psareva TS, Zakutevskyy OI, Chubar NI, Strelko VV, Shaposhnikova TO, Carvalho JR, Correia MJN. Uranium sorption on cork biomass. Colloid Surf A. 2005;252(2):231.

    Article  Google Scholar 

  15. Konstantinou M, Pashalidis I. Adsorption of hexavalent uranium on biomass by-product. J Radioanal Nucl Chem. 2007;273(3):549.

    Article  Google Scholar 

  16. Al-Masri MS, Amin Y, Al-Akel B, Al-Naama T. Biosorption of cadmium, lead and uranium by powder of poplar leaves and branches. Appl Biochem Biotech. 2010;160(4):976.

    Article  Google Scholar 

  17. Hasan M, Ahmad AL, Hameed BH. Adsorption of reactive dye onto crosslinked chitosan/oil palm ash composite beads. Chem Eng J. 2008;136(2):164.

    Article  Google Scholar 

  18. Aydın YA, Aksoy ND. Adsorption of chromium on chitosan: optimization, kinetics and thermodynamics. Chem Eng J. 2009;151(1):188.

    Article  Google Scholar 

  19. Zhang J, Lin X, Luo X. A modified lignin adsorbent for the removal of 2,4,6-trinitrotoluene. Chem Eng J. 2011;168(3):1055.

    Article  Google Scholar 

  20. Zhou QS, Lin XY, Li B. Fluoride adsorption from aqueous solution by aluminum alginate particles prepared via electrostatic spinning device. Chem Eng J. 2014;256(8):306.

    Article  Google Scholar 

  21. Doğan M, Abak H, Alkan M. Adsorption of methylene blue onto hazelnut shell: kinetics, mechanism and activation parameters. J Hazard Mater. 2009;164(1):172.

    Article  Google Scholar 

  22. Belaid KD, Kacha S, Kameche M. Adsorption kinetics of some textile dyes onto granular activated carbon. J Environ Chem. 2013;1(3):496.

    Article  Google Scholar 

  23. Xie YH, Li SY, Liu GL, Wang J, Wu K. Equilibrium, kinetic and thermodynamic studies on perchlorate adsorption by cross-linked quaternary chitosan. Chem Eng J. 2012;192(2):269.

    Article  Google Scholar 

  24. Sarkar D, Mohapatra D, Ray S, Bhattacharyya S, Adak S, Mitra N. Synthesis and characterization of sol-gel derived ZrO2 doped Al2O3 nanopowder. Ceram Int. 2007;33(7):1275.

    Article  Google Scholar 

  25. Jere GV, Santhamma MT. IR and laser Raman studies on peroxo fluoro species of zirconium. Inorg Chim Acta. 1977;24:57.

  26. Lu YY, Deng ZH. Practical Infrared Spectrum Analysis. Beijing: Publishing House of Electronics Industry; 1982. 21.

    Google Scholar 

  27. Veal BW, Lam DJ. Gmelin Handbook of Inorganic Chemistry. Berlin: Springer; 1982. 176.

    Google Scholar 

  28. Zhang T, Li Q, Liu Y. Equilibrium and kinetics studies of fluoride ions adsorption on CeO2/Al2O3 composites pretreated with non-thermal plasma. Chem Eng J. 2011;168(2):665.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 21406182), the National Decommissioning of Nuclear Facilities and Radioactive Waste Management Research Projects Focus, State Administration of Science, Technology and Industry for National Defense (SASTIND), China (No. 2014-806), and the Science and Technology Project of Qinghai Province (No. 2014-GX-Q04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-De Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YD., Luo, XG., Huang, ST. et al. A sorbent of expanded rice husk powder for removal of uranyl ion from aqueous solution. Rare Met. 35, 425–432 (2016). https://doi.org/10.1007/s12598-016-0715-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0715-6

Keywords

Navigation