Skip to main content

Advertisement

Log in

Biosorption of Cadmium, Lead, and Uranium by Powder of Poplar Leaves and Branches

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The removal of metal ions from aqueous solutions by biosorption plays an important role in water pollution control. In this study, dried leaves and branches of poplar trees were studied for removing some toxic elements (cadmium, lead, and uranium) from aqueous solutions. The equilibrium experiments were systematically carried out in a batch process, covering various process parameters that include agitation time, adsorbent size and dosage, initial cadmium, lead and uranium concentration, and pH of the aqueous solution. Adsorption behavior was found to follow Freundlich and Langmuir isotherms. The results have shown that both dried leaves and branches can be effectively used for removing uranium, while only branches were found to remove lead and cadmium completely from the aqueous solution. The maximum biosorption capacity of leaves for uranium was found to be 2.3 mg g−1 and 1.7 mg g−1 and 2.1 mg g−1 for lead and cadmium on branches, respectively. In addition, the studied biomass materials were used in removing lead and cadmium from contaminated water and the method was found to be effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Volesky, B. (1990). Biosorption and biosorbents. In B. Volesky (Ed.), Biosorption of heavy metals (pp. 3–5). Florida: CRC.

    Google Scholar 

  2. Wang, J. L. (2002). Immobilization techniques for biocatalysts and water pollution control. Beijing: Science Press.

    Google Scholar 

  3. Lee, K. J., Song, K. C., Kim, H. D., Lee, H. K., & Park, H. S. (1997). Adsorption characteristics of radiotoxic cesium and iodine from low-level liquid wastes. Journal of Radioanalytical and Nuclear Chemistry, 223(1–2), 199–205.

    Google Scholar 

  4. Miller, M., Galloway, B., VanDerpoel, G., Johnson, E., Copland, J., & Salazar, M. (2000). An alternative for cost-effective remediation of depleted uranium at certain environmental restoration sites. Radiation Protection Journal, 78, S9–S12.

    CAS  Google Scholar 

  5. Misaelides, P., Gallios, G., Meleshevich, S., Strelko, V., Kufcakova, J., Macasek, F., & Rajec, P. (2001). Removal of Cs from aqueous solutions by new inorganic sorbents. Abstracts of the 9th international conference SIS'01 Bratislava (Slovakia). Comenius University, 139, 42–43.

  6. Veglio, F., & Beolchini, F. (1997). Removal of metals by biosorption: a review. Hydrometallurgy, 44, 301–316. doi:10.1016/S0304-386X(96)00059-X.

    Article  CAS  Google Scholar 

  7. Davis, T. A., Volesky, B., & Mucci, A. (2003). A review of the biochemistry of heavy metal biosorption by Brown Algae. Water Research, 37, 4311–4330. doi:10.1016/S0043-1354(03)00293-8.

    Article  CAS  Google Scholar 

  8. Gavrilesca, M. (2004). Removal of heavy metals from the environmental by biosorption. Engineering in Life Sciences, 4, 219–232. doi:10.1002/elsc.200420026.

    Article  Google Scholar 

  9. Hussein, H., Ibrahim, S. F., Kandeel, K., & Moawad, H. (2004). Biosorption of heavy metals from waste water using Pseudomonas sp. Environmental Biotechnology, 7(1), 1–7.

    Google Scholar 

  10. Kapoor, A., & Viraraghavan, T. (1995). Fungi biosorption—an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresource Technology, 53, 195–206. doi:10.1016/0960-8524(95)00072-1.

    Article  CAS  Google Scholar 

  11. Keskinan, O., Goksu, M. Z. L., Basibuyuk, M., & Forster, C. F. (2003). Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum spicatum). Process Biochemistry, 39, 179–183.

    Article  Google Scholar 

  12. Krauter, P. W., Martinelli, R., & Martins, S. (1996). Removal of Cr (VI) from ground water by Saccharomyces Cerevisiae. Biodegradation, 7(4), 277–286.

    Article  CAS  Google Scholar 

  13. Malik, A. (2004). Metal bioremediation through growing cells. Environment International, 30, 261–278. doi:10.1016/j.envint.2003.08.001.

    Article  CAS  Google Scholar 

  14. Popa, K., Cecal, A., Humelnicu, D., & Drochioiu, G. (2003). Saccharomyces Cerevisiae as uranium bioaccumulating material: the influence of contact time, PH and anion nature. Nukleonika, 48(3), 121–125.

    CAS  Google Scholar 

  15. Tae-Young, K., Sun-Kyu, P., Sung-Yong, C., Hwan-Beom, K., Yong, K., Sang-Done, K., et al. (2005). Adsorption of heavy metals by brewery biomass. Korean Journal of Chemical Engineering, 22(1), 91–98. doi:10.1007/BF02701468.

    Article  Google Scholar 

  16. Tsezos, M. (2001). Biosorption of metals: the experience accumulated and outlook for technology development. Hydrometallurgy, 59, 241–243. doi:10.1016/S0304-386X(99)00056-0.

    Article  CAS  Google Scholar 

  17. Volesky, B. (2001). Detoxification of metal-bearing effluents: biosorption for the next century. Hydrometallurgy, 59, 203–216. doi:10.1016/S0304-386X(00)00160-2.

    Article  CAS  Google Scholar 

  18. Volesky, B., & Holan, Z. R. (1995). Biosorption of heavy metals. Biotechnology Progress, 11, 235–250. doi:10.1021/bp00033a001.

    Article  CAS  Google Scholar 

  19. Wang, J., & Chen, C. (2006). Biosorption of heavy metals by Saccharomyces Cerevisiae: a review. Biotechnology Advances, 24, 427–451. doi:10.1016/j.biotechadv.2006.03.001.

    Article  CAS  Google Scholar 

  20. White, C., Wilkinson, S. C., & Gadd, G. M. (1995). The role of microorganisms in biosorption of toxic metals and radionuclides. International Biodeterioration & Biodegradation, 35, 17–40. doi:10.1016/0964-8305(95)00036-5.

    Article  CAS  Google Scholar 

  21. Gueu, S., Yao, B., Adouby, K., & Ado, G. (2007). Kinetics and thermodynamics study of lead adsorption on to activated carbons from coconut and seed hulls of the palm tree. International Journal of Environmental Science and Technology, 4(1), 11–17.

    CAS  Google Scholar 

  22. Abdel Ghani, N. T., Hefny, M., & El Chaghaby, G. A. F. (2007). Removal of lead from aqueous solution using low cost abundantly available adsorbents. International Journal of Environmental Science and Technology, 4(1), 67–73.

    CAS  Google Scholar 

  23. Adesola Babarinde, N. A., Oyebamiji, B. J., & Adebowale, S. R. (2006). Biosorption of lead ions from aqueous solution by maize leaf. International Journal of Physical Science, 1(1), 023–026.

    Google Scholar 

  24. Pagnanelli, F., Toro, L., & Veglio, F. (2002). Olive mill solid residues as heavy metal sorbent material: a preliminary study. Waste Management (New York, N.Y.), 22, 901–907. doi:10.1016/S0956-053X(02)00086-7.

    CAS  Google Scholar 

  25. Gardea-Torresdey, J. L., Hernandez, A., Tiemann, K. J., Bibb, J., & Rodriguez, O. (1998). Adsorption of toxic metal ions from solution by inactivated cells of Larrea Tridentata (Creosote Bush). Journal of Hazardous Substance Research, 2, 1–160.

    Google Scholar 

  26. Johnson, R., Haas, E. H., Bailey, W., & Purvis, O. (1998). Bioaccumulation of metals by lichens: uptake of aqueous uranium by Peltigera Membranacea as a function of time and pH. The American Mineralogist, 83, 1494–1502.

    Google Scholar 

  27. Pino, G. H., de Mesquita, L. M. S., Torem, M. L., & Pinto, G. A. S. (2004). Biosorption of heavy metals by powder of coconut shell. 4, Mercosur Congress on Process Systems Engineering, 1–11.

  28. Goyal, P., Sharma, P., Srivastava, S., & Srivastava, M. M. (2008). Saraca indica leaf powder for decontamination of Pb: removal, recovery, adsorbent characterization and equilibrium modeling. International Journal of Environmental Science and Technology, 5(1), 27–34.

    CAS  Google Scholar 

  29. Mahvi, A. H., Gholami, F., & Nazmara, S. (2008). Cadmium biosorption from wastewater by Ulmus leaves and their ash. European Journal of Scientific Research, 23(2), 197–203.

    Google Scholar 

  30. Ahalya, N., Ramachandra, T. V., & Kanamadi, R. D. (2003). Biosorption of heavy metals. J. Chem. Environ., 7(4), 71–79.

    CAS  Google Scholar 

  31. Hammaini, A., Gonzalez, F., Ballester, A., Btazquez, M. L., & Manoz, J. A. (2003). Simultaneous uptake of metals by activated sludge. Minerals Engineering, 16, 723–729. doi:10.1016/S0892-6875(03)00166-3.

    Article  CAS  Google Scholar 

  32. Khalid, N., Rahman, A., Ahmad, S., Kiani, S. N., & Ahmed, J. (1998). Adsorption of cadmium from aqueous solutions on rice husk. Radiochimica Acta, 83, 157–162.

    CAS  Google Scholar 

  33. Muraleedharan, T. R., & Venkobachar, C. (1990). Mechanism of cobalt biosorption. Biotechnology and Bioengineering, 33, 823–831.

    Google Scholar 

  34. Norton, L., Baskaran, K., & McKenzie, S. T. (2004). Biosorption of zinc from aqueous solutions using biosolids. Advances in Environmental Research, 8, 629–635. doi:10.1016/S1093-0191(03)00035-2.

    Article  CAS  Google Scholar 

  35. Wiselogel, A., Tyson, S., & Johnson, D. (1996). Biomass feedstock resources and composition. In E. Wyman (Ed.), Handbook on bioethanol: Production and utilization (pp. 105–118). Bristol: Taylor & Framcis.

    Google Scholar 

  36. Hunt, S. (1986). Diversity of biopolymer structure and its potential for ion-binding applications. In H. Eccles & S. Hunt (Eds.), Immobilization of ions by bio-sorption (pp. 15–46). Chichester, U. K.: Society of Chemical Industry, Ellis Horwood Limited.

    Google Scholar 

  37. Khandekar, R. N., Tripathi, R. M., Raghunath, R., & Mishra, U. C. (1988). Simultaneous determination of Pb, Cd, Zn and Cu in surface soil using differential pulse anodic stripping voltammetry. Indian Journal of Environmental Health, 30(2), 98–103.

    CAS  Google Scholar 

  38. Frazer, L. (2000). Innovations. Lipid lather removes metals. Environmental Health Perspectives, 108, A320–A323. doi:10.2307/3434871.

    Article  CAS  Google Scholar 

  39. Fourest, E., & Roux, C. J. (1992). Heavy metal biosorption by Fungal Mycilial by-products: Mechanisms and influence of pH. Applied Microbiology and Biotechnology, 37(3), 399–403. doi:10.1007/BF00211001.

    Article  CAS  Google Scholar 

  40. Luef, E., Prey, T., & Hubicek, C. P. (1991). Biosorption of zinc by fungal mycelial wastes. Applied Microbiology and Biotechnology, 34, 688–692. doi:10.1007/BF00167924.

    Article  CAS  Google Scholar 

  41. Ceribasi, H., & Yetis, U. (2001). Biosorption of Ni (II) and Pb (II) by Phanerochaete chrysosporium form binary metal system-kinetics. Water South Africa, 27(1), 15–20.

    CAS  Google Scholar 

  42. Khovrychev, M. P. (1973). Absorption of copper ions by cells of Candida Utilis. Microbiology, 42, 745–749.

    Google Scholar 

  43. Tsezos, M. (1985). The selective extraction of metals from solution by microorganisms, a brief overview. Can. Metallurgy Quartz, 24, 141–144.

    CAS  Google Scholar 

  44. Garnham, G. W., Codd, G. A., & Gadd, G. M. (1993). Accumulation of zirconium by microalgae and cyanobacteria. Applied Microbial Biotechnology, 39, 666–672. doi:10.1007/BF00205072.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. I. Othman (G. D. of AECS) for his encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Al-Masri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Masri, M.S., Amin, Y., Al-Akel, B. et al. Biosorption of Cadmium, Lead, and Uranium by Powder of Poplar Leaves and Branches. Appl Biochem Biotechnol 160, 976–987 (2010). https://doi.org/10.1007/s12010-009-8568-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-009-8568-1

Keywords

Navigation