Skip to main content
Log in

Microstructure and phase transformation of as-cast and annealed Mg–4Zn–1Y alloy containing quasi-crystal phase

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

By means of optical microscope (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses, the microstructures of as-cast and heat-treated Mg–4Zn–1Y (wt%) alloy containing quasi-crystal phase were studied. The microstructure of the as-cast alloy consists of α-Mg solid solution grains, intermetallic particles and eutectic phases (W-phase and I-phase), and huge grains with serious dendritic segregation are clearly observed. After heat treatment, phase transformation and dissolution occur in the alloy and many phases remain. When the alloy was treated above 410 °C, the eutectic phases transform into spherical shape as the I-phase turns to W-phase. After heat treatment for long time, the alloy is over burnt and the W-phase decomposes to Mg–Y binary phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yong L, Yuan GY, Chen L. Stable icosahedral phase in Mg–Zn–Gd alloy. Scr Mater. 2006;55(10):919.

    Article  Google Scholar 

  2. Singh A, Watanabe M, Kato A. Microstructure and strength of quasicrystal containing extruded Mg–Zn–Y alloys for elevated temperature application. Mater Sci Eng A. 2004;385(1–2):382.

    Article  Google Scholar 

  3. Yuan GY, Yong L, Ding WJ. Effects of extrusion on the microstructure and mechanical properties of Mg–Zn–Gd alloy reinforced with quasicrystalline particles. Mater Sci Eng A. 2008;474(1–2):348.

    Article  Google Scholar 

  4. Xu DK, Tang WN, Liu L. Effect of Y concentration on the microstructure and mechanical properties of as-cast Mg–Zn–Y–Zr alloys. J Alloy Compd. 2007;432(1–2):129.

    Article  Google Scholar 

  5. Guo YC, Cheng L, Wu YX. Microstructure and phase analysis of Mg–Gd–Zn alloys. Rare Met. 2014;38(4):603.

    Google Scholar 

  6. Shi WY, Ma Y. Microstructure of ZM6 magnesium alloy with different Nd content. Rare Met. 2013;32(3):234.

    Article  Google Scholar 

  7. Cai ZX, Jiang HT, Tang D, Ma Z, Kang Q. Texture and stretch formability of rolled Mg–Zn–RE(Y, Ce, and Gd) alloys at room temperature. Rare Met. 2013;32(5):441.

    Article  Google Scholar 

  8. Li T, Zhang K, Li XG, Du ZW, Li YJ, Ma ML, Shi GL. Dynamic precipitation during multi-axial forging of an Mg–7Gd–5Y–1Nd–0.5Zr alloy. J Magnes Alloy. 2013;1(1):47.

    Article  Google Scholar 

  9. Jiang QT, Zhang K, Li XG, Li YJ, Ma ML, Shi GL, Yuan JW. The corrosion behaviors of Mg–7Gd–5Y–1Nd–0.5Zr alloy under (NH4)2SO4, NaCl and Ca(NO3)2 salts spray condition. J Magnes Alloy. 2013;1(3):230.

    Article  Google Scholar 

  10. Zhang K, Zhang X, Deng X, Li XG, Ma ML. Relationship between extrusion, Y and corrosion behavior of Mg–Y alloy in NaCl aqueous solution. J Magnes Alloy. 2013;1(2):134.

    Article  Google Scholar 

  11. Hua H, Kato H, Yuan GY. The effect of nanoquasicrystals on mechanical properties of as-extruded Mg–Zn–Gd alloy. Mater Lett. 2012;79(1):281.

    Google Scholar 

  12. Yan H, Chen RS, Han EH. A comparative study of texture and ductility of Mg–1.2Zn–0.8Gd alloy fabricated by rolling and equal channel angular extrusion. Mater Charact. 2011;62(3):321.

    Article  Google Scholar 

  13. Xu WC, Han XZ, Shan DB. Precipitates formed in the as-forged Mg–Zn–RE alloy during ageing process at 250 °C. Mater Charact. 2013;75(1):176.

    Article  Google Scholar 

  14. Jie Y, Xiao WL, Wang LD. Influences of Gd on the microstructure and strength of Mg–4.5Zn alloy. Mater Charact. 2008;59(11):1667.

    Article  Google Scholar 

  15. Luo SQ, Tang AT, Pan FS. Effect of mole ratio of Y to Zn on phase constituent of Mg–Zn–Zr–Y alloys. Trans Nonferrous Met Soc China. 2011;21(4):795.

    Article  Google Scholar 

  16. James ES, Wolverton C. Thermodynamic stability of Mg Y Zn long period stacking ordered structures. Scr Mater. 2012;67(10):798.

    Article  Google Scholar 

  17. Xu DK, Tang WN, Liu L. Effect of W-phase on the mechanical properties of as-cast Mg–Zn–Y–Zr alloys. J Alloy Compd. 2008;461(1):248.

    Article  Google Scholar 

  18. Shao G, Varisani V, Fan Z. Thermodynamic modelling of the Y–Zn and Mg–Zn–Y systems. Calphad. 2006;30(1):286.

    Article  Google Scholar 

  19. Singh A, Somekawa H, Mukai T. High temperature processing of Mg–Zn–Y alloys containing quasicrystal phase for high strength. Mater Sci Eng A. 2011;528(1):6647.

    Article  Google Scholar 

  20. Singh A, Nakamura M, Watanabe M. Quasicrystal strengthened Mg–Zn–Y alloys by extrusion. Scr Mater. 2003;49(1):417.

    Article  Google Scholar 

  21. Singh A, Osawa W, Somekawa H. Ultra-fine grain size and isotropic very high strength by direct extrusion of chill-cast Mg–Zn–Y alloys containing quasicrystal phase. Scr Mater. 2011;64(1):661.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (Nos. 50835002 and 51105102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhang, K., Li, XG. et al. Microstructure and phase transformation of as-cast and annealed Mg–4Zn–1Y alloy containing quasi-crystal phase. Rare Met. 34, 239–244 (2015). https://doi.org/10.1007/s12598-014-0443-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-014-0443-8

Keywords

Navigation