Skip to main content

Advertisement

Log in

Achieving higher strength in Cu–Ag–Zr alloy by warm/hot rolling

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

High-strength Cu–3Ag–0.5Zr alloy plates were produced by multi-pass rolling in the temperature range of 500–800 °C. An increase in strength was observed by rolling in the aforementioned range without significant loss in ductility. All the rolled samples show higher strength than solution-treated and aged samples. The maximum strength was observed for plates rolled at 500 °C with a yield strength and ultimate tensile strength of 311 and 385 MPa, respectively, and retaining a ductility of 23 %. Transmission electron microscopy (TEM) studies showed uniform distribution of fine silver precipitates and high dislocation density in the rolled samples. Nevertheless, the size of precipitates and dislocation density varied with the rolling temperature. The superior strength achieved in the rolled samples is attributed to grain refinement, dislocation strengthening, and precipitation hardening. This method can be employed to produce high-strength plates of precipitation hardenable copper alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Singh J, Jerman G, Poorman R. Mechanical properties and microstructural stability of wrought, laser, and electron beam glazed NARloy-Z alloy at elevated temperatures. J Mater Sci. 1997;32(14):389.

    Article  Google Scholar 

  2. Groh HC, Ellis DL, Loewenthal WS. Comparison of GRCop-84 to other cu alloys with high thermal conductivities. J Mater Eng Perform. 2007;17(4):594.

    Article  Google Scholar 

  3. Wang K, Liu KF, Zhang JB. Microstructure and properties of aging Cu–Cr–Zr alloy. Rare Met. 2014;33(2):134.

    Article  Google Scholar 

  4. Kanno M. Effect of a small addition of zirconium on hot ductility of a Cu–Cr alloy. Z Metallkd. 1988;79:684.

  5. Krishna SC, Thomas Tharian K, Pant B, Kottada RS. Age-hardening characteristics of Cu–3Ag–0.5Zr alloy. Mater Sci Forum. 2012;710:563.

    Article  Google Scholar 

  6. Krishna SC, Tharian KT, Pant B, Kottada RS. Microstructure and mechanical properties of Cu–Ag–Zr alloy. J Mater Eng Perform. 2013;22(12):3884.

    Article  Google Scholar 

  7. Krishna SC, Gangwar NK, Jha AK, Pant B, George KM. Enhanced strength in Cu–Ag–Zr alloy by combination of cold working and aging. J Mater Eng Perform. 2014;23(4):1458.

    Article  Google Scholar 

  8. Farè S, Lecis N, Vedani M. Aging behaviour of Al-Mg-Si alloys subjected to severe plastic deformation by ECAP and cold asymmetric rolling. J Metall. 2011. doi:10.1155/2011/959643.

  9. Alexander DJ New methods for severe plastic deformation processing. J Mater Eng Perform. 2007;16(3):360.

    Article  Google Scholar 

  10. Magalhães DCC, Hupalo MF, Cintho OM. Natural aging behavior of AA7050 Al alloy after cryogenic rolling. Mater Sci Eng, A. 2014;593:1.

    Article  Google Scholar 

  11. Haldar A, Ray RK. Microstructural and textural development in an extra low carbon steel during warm rolling. Mater Sci Eng, A. 2005;391(1):402.

    Article  Google Scholar 

  12. Barnett RM, Jona JJ. Influence of ferrite rolling temperature on microstructure and texture in deformed low C and IF steels. ISIJ Int. 1999;37(7):856.

    Article  Google Scholar 

  13. Chen H, Kang SB, Yu H, Kim HW, Min G. Microstructure and mechanical properties of Mg–4.5Al–1.0Zn alloy sheets produced by twin roll casting and sequential warm rolling. Mater Sci Eng, A. 2008;492(1):317.

    Article  Google Scholar 

  14. Ikeda M, Komatsu S, Sugimoto T, Hasegawa M. Effect of two phase warm rolling on aging behavior and mechanical properties of Ti–15Mo–5Zr–3Al alloy. Mater Sci Eng, A. 1998;243(1):140.

    Article  Google Scholar 

  15. John F. Humphreys, Philip B. Prangnell, Ronald Priestner. Fine-grained alloys by thermomechanical processing. Curr Opin Solid State Mater Sci. 2001;5(1):15.

    Article  Google Scholar 

  16. Wert JA, paton NE, Hamilton CH, Mahoney MW. Grain refinement in 7075 aluminum by thermomechanical processing. Metall Trans A. 1981;12(7):1268.

    Article  Google Scholar 

  17. Su JH, Liu P, Dong QM, Li HJ, Ren FZ, Tian BH. Recrystallization and precipitation behavior of Cu–Cr–Zr alloy. J Mater Eng Perform. 2007;16(4):490.

    Article  Google Scholar 

  18. Dalla Torre FH, Gazder AA, Gu CF, Davies CH, Pereloma EV. Grain size, misorientation, and texture evolution of copper processed by equal channel angular extrusion and the validity of the Hall-Petch relationship. Metall Mater Trans A. 2007;38(5):1080.

    Article  Google Scholar 

  19. Usov VV, Shkatulyak NM, Bryukhanov, AA, Fasmann D. Influence of the rate and degree of deformation on the texture, structure and mechanical properties of steel. J Metall. 2014. doi:10.1155/2014/397279.

  20. Sellars CM, Whiteman JA. Recrystallization and grain growth’ in hot rolling. Met Sci. 1979;13(3–4):187.

    Article  Google Scholar 

  21. Vo P, Jahazi M, Yue S. Recrystallization during thermomechanical processing of IMI834. Metall Mater Trans A. 2008;39(12):2965.

    Article  Google Scholar 

  22. Yegeneswaran AH, Prasad YVRK, Raman KS. Effect of grain size and texture on the mechanical properties of warm worked cadmium-l.5 pct zinc alloy. Metall Trans A. 1978;9(9):1311.

    Article  Google Scholar 

  23. Jian WW, Cheng GM, Xu WZ, Yuan H, Tsai MH, Wang QD, Koch CC, Zhua YT, Mathaudhu SN. Ultrastrong Mg alloy via nano-spaced stacking faults. Mater Res lett. 2013;1(2):61.

    Article  Google Scholar 

  24. Krishna SC, Gangwar NK, Jha AK, Pant B, George KM. Properties and strengthening mechanisms in cold-rolled and aged Cu–3Ag–0.5Zr alloy. Metallogr Microstruct Anal. 2014;3(4):323.

  25. Lin JB, Ren WJ, Wang QD, Ma LF, Chen YJ. Influence of grain size and texture on the yield strength of mg alloys processed by severe plastic deformation. Adv Mater Sci Eng. 2014. doi:10.1155/2014/356572.

  26. Gladman T. Precipitation-hardening of metals. Mater Sci Tech. 1998;15(1):30.

    Article  Google Scholar 

  27. Dieter GE, Bacon D. Mechanical Metallurgy. Vol. 3. New York: McGraw-Hill; 1986. 231.

Download references

Acknowledgments

The authors are indebted to Shri M. Chandradathan Director, Vikram Sarabhai Space Centre for his kind permission to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chenna Krishna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chenna Krishna, S., Jha, A.K., Pant, B. et al. Achieving higher strength in Cu–Ag–Zr alloy by warm/hot rolling. Rare Met. 36, 263–267 (2017). https://doi.org/10.1007/s12598-015-0502-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0502-9

Keywords

Navigation