Skip to main content
Log in

Hot-Working Characteristics and Dynamic Recrystallization Behavior of Hot Isostatically Pressed FGH4096 Superalloy

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Hot-working characteristics, microstructure evolution, and dynamic recrystallization (DRX) of hot isostatically pressed (HIPed) FGH4096 superalloy compressed at the temperature range of 1040 °C to 1130 °C and strain rate range of 0.01 to 10 s−1 were studied. Based on the flow stress curves obtained by friction–temperature correction, a new constitutive equation has been established to predict the flow stresses under different deformation conditions accurately. Also, the hot working maps under different strains were established to optimize the hot working parameters. Different recrystallization behaviors dominate in different hot working regions, and the DRX behavior is sensitive to deformation temperature rather than strain rate. Both continuous dynamic recrystallization (CDRX) and discontinuous dynamic recrystallization (DDRX) are activated for HIPed FGH4096 superalloy under low deformation temperature, while the DDRX dominates under high deformation temperature. The adiabatic shear bands, voids, and cracks along grain boundaries are the main factors of flow instability in the instability regions. The optimized hot working window of T = 1080 °C to 1107 °C and \( \dot{\varepsilon } \) = 10−0.2 to 10−1.3 s−1 was obtained by combining the hot working map and microstructure evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. H.L. Huang, G.Q. Liu, H. Wang, A. Ullah, and B.F. Hu: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 1075–84.

    Article  Google Scholar 

  2. R. Jiang, L.C. Zhang, W.T. Zhang, Y. Zhang, Y. Chen, J.T. Liu, Y.W. Zhang, and Y.D. Song: Mater. Sci. Eng. A, 2021, vol. 817, p. 141421.

    Article  CAS  Google Scholar 

  3. S.L. Semiatin, K.E. McClary, A.D. Rollett, C.G. Roberts, E.J. Payton, F. Zhang, and T.P. Gabb: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 1649–61.

    Article  Google Scholar 

  4. C. Zhang, L.W. Zhang, M.F. Li, W.F. Shen, and S.D. Gu: J. Mater. Res., 2014, vol. 29, pp. 2799–808.

    Article  CAS  Google Scholar 

  5. Z.P. Wan, L.X. Hu, Y. Sun, T. Wang, and Z. Li: J. Alloys Compd., 2018, vol. 769, pp. 367–75.

    Article  CAS  Google Scholar 

  6. J. Liu, G. Liu, B. Hu, Y. Song, Z. Qin, and Y. Zhang: Sci. Technol. B, 2006, vol. 13, pp. 319–23.

    CAS  Google Scholar 

  7. W. Xu, L.W. Zhang, S.D. Gu, and J.L. Zhang: Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 66–71.

    Article  CAS  Google Scholar 

  8. Y. Ning, Z. Yao, H. Li, H. Guo, Y. Tao, and Y. Zhang: Mater. Sci. Eng. A, 2010, vol. 527, pp. 961–6.

    Article  Google Scholar 

  9. M.J. Zhang, F.G. Li, S.Y. Wang, and C.Y. Liu: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4030–9.

    Article  Google Scholar 

  10. I. Mejía, G. Altamirano, A. Bedolla-Jacuinde, and J.M. Cabrera: Mater. Sci. Eng. A, 2014, vol. 610, pp. 116–25.

    Article  Google Scholar 

  11. J.S. Zhang, Y.F. Xia, G.Z. Quan, X. Wang, and J. Zhou: J. Alloys Compd., 2018, vol. 743, pp. 464–78.

    Article  CAS  Google Scholar 

  12. S. Gourdet and F. Montheillet: Mater. Sci. Eng. A, 2000, vol. 283, pp. 274–88.

    Article  Google Scholar 

  13. S.V. Mehtonen, L.P. Karjalainen, and D.A. Porter: Mater. Sci. Eng. A, 2013, vol. 571, pp. 1–2.

    Article  CAS  Google Scholar 

  14. J.C. Lee, H.K. Seok, and J.Y. Suh: Acta Mater., 2002, vol. 50, pp. 4005–19.

    Article  CAS  Google Scholar 

  15. Y. Liu, Z. Yao, Y. Ning, and Y. Nan: J. Alloys Compd., 2017, vol. 691, pp. 554–63.

    Article  CAS  Google Scholar 

  16. S.S.S. Kumar, T. Raghu, P.P. Bhattacharjee, G. Appa Rao, and U. Borah: Mater. Charact., 2018, vol. 146, pp. 217–36.

    Article  CAS  Google Scholar 

  17. Y. Ning, Z. Yao, M.W. Fu, and H. Guo: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6968–74.

    Article  Google Scholar 

  18. H. Wu, M. Liu, Y. Wang, Z. Huang, G. Tan, and L. Yang: J. Mater. Res. Technol., 2020, vol. 9, pp. 5090–104.

    Article  CAS  Google Scholar 

  19. S. Mitsche, C. Sommitsch, D. Huber, M. Stockinger, and P. Poelt: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3754–60.

    Article  Google Scholar 

  20. L. Tan, Y. Li, C. Liu, C. Yang, H. Ding, L. Huang, F. Liu, Z. Qin, and L. Jiang: Mater. Charact., 2018, vol. 140, pp. 30–8.

    Article  CAS  Google Scholar 

  21. H.Z. Li, L. Yang, Y. Wang, G. Tan, S.C. Qiao, Z.Q. Huang, and M.X. Liu: Mater. Charact., 2020, vol. 163, p. 110285.

    Article  CAS  Google Scholar 

  22. L. Tan, Y. Li, F. Liu, Y. Nie, and L. Jiang: J. Alloys Compd., 2019, vol. 789, pp. 506–17.

    Article  CAS  Google Scholar 

  23. P. Zhang, C. Hu, Q. Zhu, C.G. Ding, and H.Y. Qin: Mater. Des., 2015, vol. 65, pp. 1153–60.

    Article  CAS  Google Scholar 

  24. G. Tan, H.Z. Li, Y. Wang, L. Yang, S.C. Qiao, Z.Q. Huang, and M.X. Liu: Trans. Nonferrous Met. Soc. China, 2020, vol. 30, pp. 2709–23.

    Article  CAS  Google Scholar 

  25. Y. Wang, W.Z. Shao, L. Zhen, and X.M. Zhang: Mater. Sci. Eng. A, 2008, vol. 486, pp. 321–32.

    Article  Google Scholar 

  26. H. Zhang, K. Zhang, Z. Lu, C. Zhao, and X. Yang: Mater. Sci. Eng. A, 2014, vol. 604, pp. 1–8.

    Article  CAS  Google Scholar 

  27. H. Jiang, Q. Zhang, X. Chen, Z. Chen, Z. Jiang, X. Wu, and J. Fan: Acta Mater., 2007, vol. 55, pp. 2219–28.

    Article  CAS  Google Scholar 

  28. B. Avitzur: Metal Forming Processes and Analysis, McGraw-Hill, New York, 1968, pp. 102–11.

    Google Scholar 

  29. R. Ebrahimi and A. Najafizadeh: J. Mater. Process. Technol., 2004, vol. 152, pp. 136–43.

    Article  CAS  Google Scholar 

  30. C. Zhang, L. Zhang, W. Shen, C. Liu, Y. Xia, and R. Li: Mater. Des., 2016, vol. 90, pp. 804–14.

    Article  CAS  Google Scholar 

  31. Y.P. Li, H. Matsumoto, and A. Chiba: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1203–9.

    Article  CAS  Google Scholar 

  32. M. Wang, W. Wang, Z. Liu, C. Sun, and L. Qian: Mater. Today Commun., 2018, vol. 14, pp. 188–98.

    Article  CAS  Google Scholar 

  33. H. Jiang, J.X. Dong, M.C. Zhang, L. Zheng, and Z.H. Yao: J. Alloys Compd., 2015, vol. 647, pp. 338–50.

    Article  CAS  Google Scholar 

  34. R.L. Goetz and S.L. Semiatin: J. Mater. Eng. Perform., 2001, vol. 10, pp. 710–17.

    Article  CAS  Google Scholar 

  35. C. Devadas, D. Baragar, G. Ruddle, I.V. Samarasekera, and E.B. Hawbolt: Metall. Trans. A, 1991, vol. 22, pp. 321–33.

    Article  Google Scholar 

  36. H. Shi, A.J. McLaren, C.M. Sellars, R. Shahani, and R. Bolingbroke: Mater. Sci. Technol., 1997, vol. 13, pp. 210–16.

    Article  CAS  Google Scholar 

  37. J.J. Jonas, C.M. Sellars, and W.J.M. Tegart: Metall. Rev., 1969, vol. 14, pp. 1–24.

    Article  Google Scholar 

  38. A. He, G. Xie, H. Zhang, and X. Wang: Mater. Des., 2013, vol. 52, pp. 677–85.

    Article  CAS  Google Scholar 

  39. S.F. Medina and C.A. Hernandez: Sin. Engl. Lett., 1996, vol. 44, pp. 137–48.

    CAS  Google Scholar 

  40. C. Shi, W. Mao, and X.G. Chen: Mater. Sci. Eng. A, 2013, vol. 571, pp. 83–91.

    Article  CAS  Google Scholar 

  41. L. Chen, G. Zhao, J. Yu, and W. Zhang: Mater. Des., 2015, vol. 66, pp. 129–36.

    Article  CAS  Google Scholar 

  42. D. Huang and W. Feng: J. Mater. Eng. Perform., 2019, vol. 28, pp. 2281–91.

    Article  CAS  Google Scholar 

  43. Z. Shi, X. Yan, and C. Duan: J. Alloys Compd., 2015, vol. 652, pp. 30–8.

    Article  CAS  Google Scholar 

  44. Y.V.R.K. PrasadR, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, and D.R. Barker: Metall. Trans. A, 1983, vol. 15, pp. 1883–92.

    Article  Google Scholar 

  45. Y.V.R.K. Prasad: J. Mater. Eng. Perform., 2003, vol. 12, pp. 638–45.

    Article  CAS  Google Scholar 

  46. F. Montheillet, J.J. Jonas, and K.W. Neale: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 232–5.

    Article  CAS  Google Scholar 

  47. Y.V.R.K. Prasad: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 235–6.

    Article  CAS  Google Scholar 

  48. M.C. Somani, K. Muraleedharan, Y.V.R.K. Prasad, and V. Singh: Mater. Sci. Eng. A, 1998, vol. 245, pp. 88–99.

    Article  Google Scholar 

  49. N. Srinivasan and Y.V.R.K. Prasad: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2275–84.

    Article  CAS  Google Scholar 

  50. Y. Liu, Y. Ning, Z. Yao, H. Guo, and Y. Nan: J. Alloys Compd., 2014, vol. 612, pp. 56–63.

    Article  CAS  Google Scholar 

  51. Y. Liu, Y. Ning, Y. Nan, H. Liang, Y. Li, and Z. Zhao: J. Alloys Compd., 2015, vol. 633, pp. 505–15.

    Article  CAS  Google Scholar 

  52. X. Ma, W. Zeng, K. Wang, Y. Lai, and Y. Zhou: Mater. Sci. Eng. A, 2012, vol. 550, pp. 131–7.

    Article  CAS  Google Scholar 

  53. K. Wang, W. Zeng, Y. Zhao, Y. Lai, and Y. Zhou: J. Mater. Sci., 2010, vol. 45, pp. 5883–91.

    Article  CAS  Google Scholar 

  54. B. Fang, G.F. Tian, Z. Ji, M.Y. Wang, C.C. Jia, and S.W. Yang: Int. J. Met. Mater., 2019, vol. 26, pp. 657–63.

    Article  CAS  Google Scholar 

  55. S.S.S. Kumar, T. Raghu, P.P. Bhattacharjee, G.A. Rao, and U. Borah: J. Alloys Compd., 2015, vol. 681, pp. 28–42.

    Article  Google Scholar 

  56. H. Zhang, K. Zhang, H. Zhou, Z. Lu, C. Zhao, and X. Yang: Mater. Des., 2015, vol. 80, pp. 51–62.

    Article  CAS  Google Scholar 

  57. A. Nicolaÿ, G. Fiorucci, J.M. Franchet, J. Cormier, and N. Bozzolo: Acta Mater., 2019, vol. 174, pp. 406–17.

    Article  Google Scholar 

  58. X. Peng, H. Guo, Z. Shi, C. Qin, Z. Zhao, and Z. Yao: Mater. Sci. Eng. A, 2014, vol. 605, pp. 80–8.

    Article  CAS  Google Scholar 

  59. P. Liu, R. Zhang, Y. Yuan, C. Cui, Y. Zhou, and X. Sun: J. Alloys Compd., 2020, vol. 831, p. 154618.

    Article  CAS  Google Scholar 

  60. J.F. Jiang, G.F. Xiao, Y. Wang, Y.Z. Liu, and Y. Zhang: Trans. Nonferrous Met. Soc. China, 2020, vol. 30, pp. 710–26.

    Article  CAS  Google Scholar 

  61. D. Ponge and G. Gottstein: Acta Mater., 1998, vol. 46, pp. 69–80.

    Article  CAS  Google Scholar 

  62. S.W. Xu, S. Kamado, N. Matsumoto, T. Honma, and Y. Kojima: Mater. Sci. Eng. A, 2009, vol. 527, pp. 52–60.

    Article  Google Scholar 

  63. Y.C. Lin, X.Y. Wu, X.M. Chen, J. Chen, D.X. Wen, J.L. Zhang, and L.T. Li: J. Alloys Compd., 2015, vol. 640, pp. 101–13.

    Article  CAS  Google Scholar 

  64. H. Zhang, K. Zhang, S. Jiang, H. Zhou, C. Zhao, and X. Yang: J. Alloys Compd., 2015, vol. 623, pp. 374–85.

    Article  CAS  Google Scholar 

  65. S.S.S. Kumar, T. Raghu, P.P. Bhattacharjee, G.A. Rao, and U. Borah: J. Alloys Compd., 2017, vol. 709, pp. 394–409.

    Article  CAS  Google Scholar 

  66. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Elsevier Science Ltd, Oxford, 2004.

    Google Scholar 

  67. Q. Guo, D. Li, S. Guo, H. Peng, and J. Hu: J. Nucl. Mater., 2011, vol. 414, pp. 440–50.

    Article  CAS  Google Scholar 

  68. M. Detrois, S. Antonov, S. Tin, P.D. Jablonski, and J.A. Hawk: Mater. Charact., 2019, vol. 157, p. 109915.

    Article  CAS  Google Scholar 

  69. B. Nithin, K. Chattopadhyay, and G. Phanikumar: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 4895–905.

    Article  Google Scholar 

  70. C. Gupta, J.S. Jha, B. Jayabalan, R. Gujrati, A. Alankar, and S. Mishra: Metall. Mater. Trans. A, 2019, vol. 50A, pp. 4714–31.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Yantai high-end talent introduction “Double Hundred Plan” (2021), Taishan Scholars Program of Shandong Province (2021), Talent Training Program for Shandong Province Higher Educational Youth Innovative Teams (2019), National Science and Technology Major Project of China (J2019-VI-0023-0140), Natural Science Foundation of Shandong Province (ZR2019MEM012), Major Scientific and Technological Innovation Project in Shandong Province (2019JZZY010325), Science Foundation Program for Distinguished Young Scholars of Shandong (Overseas) (2022HWYQ-084), and Graduate Innovation Foundation of Yantai University (2022).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Zhang, H., Liu, Z. et al. Hot-Working Characteristics and Dynamic Recrystallization Behavior of Hot Isostatically Pressed FGH4096 Superalloy. Metall Mater Trans A 54, 962–982 (2023). https://doi.org/10.1007/s11661-022-06951-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06951-4

Navigation