Skip to main content
Log in

“Complexation–precipitation” metal separation method system and its application in secondary resources

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Recovery processes of secondary resources usually encounter problems because of the diverse compositions of wastes. To enhance the applicability of traditional hydrometallurgical process toward secondary resources, the adjustment of components is necessary. In traditional hydrometallurgical separation, precipitation and complexation are extensively used. However, their combination as a specific metal separation method has not yet been studied in detail. This approach is very promising for solving problems caused by changeable components during recycling processes of secondary resources. This paper reviews the effects of precipitation and complexation in metal separation processes, and a metal separation method system of “complexation–precipitation” developed to adjust the components of secondary resources is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Li JH, Li XH, Hu QY, Wang ZX, Zheng JC, Wu L, Zhang LX. Study of extraction and purification of Ni, Co and Mn from spent battery material. Hydrometallurgy. 2009;99(1–2):7.

    Article  Google Scholar 

  2. Lee J, Pandey BD. Bio-processing of solid wastes and secondary resources for metal extraction—a review. Waste Manag. 2012;32(1):3.

    Article  Google Scholar 

  3. Belardi G, Lavecchia R, Medici F, Piga L. Thermal treatment for recovery of manganese and zinc from zinc–carbon and alkaline spent batteries. Waste Manag. 2012;32(10):1945.

    Article  Google Scholar 

  4. Zeng G, Deng X, Luo S, Luo X, Zou J. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries. J Hazard Mater. 2012;199–200(15):164.

    Article  Google Scholar 

  5. Pinto Isabel SS, Soares Helena MVM. Microwave-assisted selective leaching of nickel from spent hydrodesulphurization catalyst: a comparative study between sulphuric and organic acids. Hydrometallurgy. 2013;140:20.

    Article  Google Scholar 

  6. Zhang SG, Yang M, Liu H, Pan DA, Tian JJ. Recovery of waste rare earth fluorescent powders by two steps acid leaching. Rare Met. 2013;32(6):609.

    Article  Google Scholar 

  7. Fernandes A, Afonso JC, Dutra AJB. Separation of nickel(II), cobalt(II) and lanthanides from spent Ni-MH batteries by hydrochloric acid leaching, solvent extraction and precipitation. Hydrometallurgy. 2013;133:37.

    Article  Google Scholar 

  8. Rácz R, Ilea P. Electrolytic recovery of Mn3O4 and Zn from sulphuric acid leach liquors of spent zinc–carbon–MnO2 battery powder. Hydrometallurgy. 2013;139:116.

    Article  Google Scholar 

  9. Coman V, Robotin B, Ilea P. Nickel recovery/removal from industrial wastes: a review. Resour Conserv Recycl. 2013;73:229.

    Article  Google Scholar 

  10. Chen L, Tang X, Zhang Y, Li L, Zeng Z, Zhang Y. Process for the recovery of cobalt oxalate from spent lithium-ion batteries. Hydrometallurgy. 2011;108(1–2):80.

    Article  Google Scholar 

  11. Haghighi HK, Moradkhani D, Sedaghat B, Najafabadi MR, Behnamfard A. Production of copper cathode from oxidized copper ores by acidic leaching and two-step precipitation followed by electrowinning. Hydrometallurgy. 2013;133:111.

    Article  Google Scholar 

  12. Janin A, Zaviska F, Drogui P, Blais JF, Mercier G. Selective recovery of metals in leachate from chromated copper arsenate treated wastes using electrochemical technology and chemical precipitation. Hydrometallurgy. 2009;96(4):318.

    Article  Google Scholar 

  13. Huang JH, Kargl-Simard C, Oliazadeh M, Alfantazi AM. pH-controlled precipitation of cobalt and molybdenum from industrial waste effluents of a cobalt electrodeposition process. Hydrometallurgy. 2004;75(1):77.

    Article  Google Scholar 

  14. Giannopoulou I, Panias D. Differential precipitation of copper and nickel from acidic polymetallic aqueous solutions. Hydrometallurgy. 2008;90(2):137.

    Article  Google Scholar 

  15. Zhu Z, Pranolo Y, Zhang W, Wang W, Cheng CY. Precipitation of impurities from synthetic laterite leach solutions. Hydrometallurgy. 2010;104(1):81.

    Article  Google Scholar 

  16. Avila M, Grinbaum B, Carranza F, Mazuelos A, Romero R, Iglesias N, Lozano JL, Perez G, Valiente M. Zinc recovery from an effluent using Ionquest 290: from laboratory scale to pilot plant. Hydrometallurgy. 2011;107(3–4):63.

    Article  Google Scholar 

  17. Lu MN, Das RP, Li W, Peng JH, Zhang LB. Microwave mediated precipitation and aging of iron oxyhydroxides at low temperature for possible hydrometallurgical applications. Hydrometallurgy. 2013;134–135:110.

    Article  Google Scholar 

  18. Silva AM, Cunha EC, Silva FDR, Leão VA. Treatment of high-manganese mine water with limestone and sodium carbonate. J Clean Prod. 2012;29–30:11.

    Article  Google Scholar 

  19. Formanek J, Jandova J, Capek J. Iron removal from zinc liquors originating from hydrometallurgical processing of spent Zn/MnO2 batteries. Hydrometallurgy. 2013;138:100.

    Article  Google Scholar 

  20. Lewis AE. Review of metal sulphide precipitation. Hydrometallurgy. 2010;104(2):222.

    Article  Google Scholar 

  21. Xie Y, Xu Y, Yan L, Yang R. Recovery of nickel, copper and cobalt from low-grade Ni–Cu sulfide tailings. Hydrometallurgy. 2005;80(1–2):54.

    Article  Google Scholar 

  22. Deniz U, Bekmezci OK, Kaksonen AH, Sahinkaya E. Sequential precipitation of Cu and Fe using a three-stage sulfidogenic fluidized-bed reactor system. Miner Eng. 2011;24(11):1100.

    Article  Google Scholar 

  23. Paulino JF, Busnardo NG, Afonso JC. Recovery of valuable elements from spent Li-batteries. J Hazard Mater. 2008;150(3):843.

    Article  Google Scholar 

  24. Chen X, Chen A, Zhao Z, Liu X, Shi Y, Wang D. Removal of Cu from the nickel electrolysis anolyte using nickel thiocarbonate. Hydrometallurgy. 2013;133:106.

    Article  Google Scholar 

  25. Rabah MA, Farghaly FE, Abd-El MMA. Recovery of nickel, cobalt and some salts from spent Ni-MH batteries. Waste Manag. 2008;28(7):1159.

    Article  Google Scholar 

  26. du Plessis CA, Slabbert W, Hallberg KB, Barrie JD. Ferredox: a biohydrometallurgical processing concept for limonitic nickel laterite. Hydrometallurgy. 2011;109(3–4):221.

    Article  Google Scholar 

  27. Song Y, Wang M, Liang J, Zhou L. High-rate precipitation of iron as jarosite by using a combination process of electrolytic reduction and biological oxidation. Hydrometallurgy. 2014;143:23.

    Article  Google Scholar 

  28. Wang M, Zhou L. Simultaneous oxidation and precipitation of iron using jarosite immobilized acidithiobacillus ferrooxidans and its relevance to acid mine drainage. Hydrometallurgy. 2012;125–126:152.

    Article  Google Scholar 

  29. Dutrizac JE, Chen TT. The behaviour of phosphate during jarosite precipitation. Hydrometallurgy. 2010;102(1):55.

    Article  Google Scholar 

  30. Mohapatra M, Anand S, Das RP. Behaviour of Co(II) in solutions obtained by dissolution of cobalto–cobaltic oxide in NH3–SO2–H2O medium. Hydrometallurgy. 2001;61(3):169.

    Article  Google Scholar 

  31. Zhang W, Zhao Z, Chen X. The behaviour of phosphorus impurities in the novel selective precipitation process. Hydrometallurgy. 2013;139:111.

    Article  Google Scholar 

  32. Nathsarma KC, Rout PC, Sarangi K. Manganese precipitation kinetics and cobalt adsorption on MnO2 from the ammoniacal ammonium sulfate leach liquor of Indian Ocean manganese nodule. Hydrometallurgy. 2013;133:133.

    Article  Google Scholar 

  33. Zhang W, Singh P, Muir D. Oxidative precipitation of manganese with SO2/O2 and separation from cobalt and nickel. Hydrometallurgy. 2002;63(2):127.

    Article  Google Scholar 

  34. Zhang W, Cheng CY, Pranolo Y. Investigation of methods for removal and recovery of manganese in hydrometallurgical processes. Hydrometallurgy. 2010;101(1–2):58.

    Article  Google Scholar 

  35. Zhao HP, Guo YF, Zhang XX. Electrolytic recovery of nickel powder from acid-washing solution containing nickel in artificial diamond production. Chin J Process Eng. 2004;4(4):310.

    Google Scholar 

  36. Nishimura T, Umetsu Y. Oxidative precipitation of arsenic(III)/with manganese(II)/and iron(II) in dilute acidic solution by ozone. Hydrometallurgy. 2001;62(2):83.

    Article  Google Scholar 

  37. Kim T-H, Senanayake G, Kang J-G, Sohn J-S, Rhee K-I, Lee S-W, Shin S-M. Reductive acid leaching of spent zinc–carbon batteries and oxidative precipitation of Mn–Zn ferrite nanoparticles. Hydrometallurgy. 2009;96(1–2):154.

    Article  Google Scholar 

  38. Yin Z, Ding Z, Hu H, Liu K, Chen Q. Dissolution of zinc silicate (hemimorphite) with ammonia–ammonium chloride solution. Hydrometallurgy. 2010;103(1–4):215.

    Article  Google Scholar 

  39. Park K-H, Mohapatra D, Reddy BR, Nam C-W. A study on the oxidative ammonia/ammonium sulphate leaching of a complex (Cu–Ni–Co–Fe) matte. Hydrometallurgy. 2007;86(3):164.

    Article  Google Scholar 

  40. Ma B, Wang C, Yang W, Yin F, Chen Y. Screening and reduction roasting of limonitic laterite and ammonia-carbonate leaching of nickel–cobalt to produce a high-grade iron concentrate. Miner Eng. 2013;50–51:106.

    Article  Google Scholar 

  41. Li L, Ge J, Chen RJ, Wu AF, Chen S, Zhang XX. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Waste Manag. 2010;30(12):2615.

    Article  Google Scholar 

  42. Li L, Ge J, Wu F, Chen R, Chen S, Wu B. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant. J Hazard Mater. 2010;176(1–3):288.

    Article  Google Scholar 

  43. Goel S, Gautam A. Effect of chelating agents on mobilization of metal from waste catalyst. Hydrometallurgy. 2010;101(3–4):120.

    Article  Google Scholar 

  44. Wang XF, Kong XH, Zhao ZY. Recovery of noble metal in lithium ion battery. Battery. 2001;31(1):14.

    Google Scholar 

  45. Zhang X, Ji L, Wang J, Li R, Liu Q, Zhang M, Liu L. Removal of uranium(VI) from aqueous solutions by magnetic Mg–Al layered double hydroxide intercalated with citrate: kinetic and thermodynamic investigation. Colloids Surf A Physicochem Eng Asp. 2012;414:220.

    Article  Google Scholar 

  46. Wang T, Liu W, Xiong L, Xu N, Ni J. Influence of pH, ionic strength and humic acid on competitive adsorption of Pb(II), Cd(II) and Cr(III) onto titanate nanotubes. Chem Eng J. 2013;215–216(1):366.

    Article  Google Scholar 

  47. Cao HZ, Zheng GQ, Zhi B, Tang MT. Cathodic process of zinc electrowinning in solution containing ammonia complex. Chin J Nonferr Met. 2005;15(4):655.

    Google Scholar 

  48. Zhang LJ, Tao HC, Wei XY, Lei T, Li JB, Wang AJ, Wu WM. Bioelectrochemical recovery of ammonia–copper(II) complexes from wastewater using a dual chamber microbial fuel cell. Chemosphere. 2012;89(10):1177.

    Article  Google Scholar 

  49. Almeida MRH, Barbano EP, Carvalho MF, Carlos IA, Siqueira JLP, Barbosa LL. Electrodeposition of copper–zinc from an alkaline bath based on EDTA. Surf Coat Technol. 2011;206(1):95.

    Article  Google Scholar 

  50. Liu ZX, Yin ZL, Xiong SF, Chen YG, Chen QY. Leaching and kinetic modeling of calcareous bornite in ammonia ammonium sulfate solution with sodium persulfate. Hydrometallurgy. 2014;144–145:86.

    Article  Google Scholar 

  51. Deutsch JL, Dreisinger DB. Silver sulfide leaching with thiosulfate in the presence of additives Part I: copper–ammonia leaching. Hydrometallurgy. 2013;137:156.

    Article  Google Scholar 

  52. Zhang W, Tsang DCW, Lo IMC. Removal of Pb and MDF from contaminated soils by EDTA- and SDS-enhanced washing. Chemosphere. 2007;66(11):2025.

    Article  Google Scholar 

  53. Hernández CMF, Banza AN, Gock E. Recovery of metals from Cuban nickel tailings by leaching with organic acids followed by precipitation and magnetic separation. J Hazard Mater. 2007;139(1):25.

    Article  Google Scholar 

  54. Senanayake G. Catalytic role of ammonia in the anodic oxidation of gold in copper-free thiosulfate solutions. Hydrometallurgy. 2005;77(3–4):287.

    Article  Google Scholar 

  55. Pedersen AJ, Ottosen LM, Villumsen A. Electrodialytic removal of heavy metals from municipal solid waste incineration fly ash using ammonium citrate as assisting agent. J Hazard Mater. 2005;122(1–2):103.

    Article  Google Scholar 

  56. Zhang W, Cheng CY. Manganese metallurgy review. Part II: manganese separation and recovery from solution. Hydrometallurgy. 2007;89(3–4):160.

    Article  Google Scholar 

  57. Shen QF, Yang XW. Solubility of Fe2+/Mn2+/Zn2+ in NH3–H2O system. Nonferr Met. 2003;55(4):65.

    Google Scholar 

  58. Nadirov RK, Syzdykova LI, Zhussupova AK, Usserbaev MT. Recovery of value metals from copper smelter slag by ammonium chloride treatment. Int J Miner Process. 2013;124:145.

    Article  Google Scholar 

  59. Chen L, Tang XC, Zhang Y, Qu Y, Wang ZM. Separation and recovery of Ni, Co and Mn from spent lithium-ion batteries. Chin J Nonferr Met. 2011;21(5):1192.

    Google Scholar 

  60. Zhao ZW, Wang DD, Chen AL, Huo GS, Chen XY. Application and prospect of leaching processes of cobalt from Cu–Co alloy and slag. Hydrometall China. 2008;27(4):195.

    Google Scholar 

  61. Dean JA, Wei J (Translator). Lange’s Handbook of Chemistry. 2nd edition. Beijing: Science Press; 2003. 8.80.

  62. Zhang P. Advanced Chemistry for Engineering. Changsha: Hunan Educational Press; 2002. 337.

  63. Zhang CF, Yao YL, Zhan J. Thermodynamics of precipitation–coordination equilibrium in Fe2+–Ni2+–NH3–NH4+–C2O4 2−–H2O system. Chin J Nonferr Met. 2012;22(10):2938.

    Google Scholar 

  64. Chai LY, Chang H, Wang YY, Shu YD, Li J, Yuan L, Wang P, Fang Y, Zhao K. Equilibrium of hydroxyl complex ions in Cd2+–H2O system. Chin J Nonferr Met. 2007;17(3):487.

    Google Scholar 

  65. Su JT, Su YC, Lai ZG, Yu P, He XD. Thermodynamic analysis of preparation of multiple carbonate of Ni, Co and Mn by coprecipitation method. J Chin Ceram Soc. 2006;34(6):695.

    Google Scholar 

  66. Ma LW, Nie ZR, Xi XL, Han XG. Thermodynamic equilibrium in Co–Ni–Fe–Mn complexation–precipitation system. Chin J Nonferr Met. 2013;23(2):516.

    Google Scholar 

  67. Ma LW, Nie ZR, Xi XL, Li XK. Theoretical simulation and experimental study on nickel, cobalt, manganese separation in complexation–precipitation system. Sep Purif Technol. 2013;108(19):124.

    Article  Google Scholar 

  68. Ma LW, Nie ZR, Xi XL, Han XG. Cobalt recovery from cobalt-bearing waste in sulphuric and citric acid systems. Hydrometallurgy. 2013;136:1.

    Article  Google Scholar 

  69. Zhu ZY, Zhu LW. Synthesis of layered cathode material 0.5Li2MnO3 0.5LiMn1/3Ni1/3Co1/3O2 by an improved co-precipitation method for lithium-ion battery. J Power Sources. 2014;256(6):178.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National High-tech R&D Program of China (No. 2013AA040208), the National Natural Science Foundation of China (No. 51304010), and the Beijing Natural Science Foundation (No. 2132016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuo-Ren Nie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, ZR., Ma, LW. & Xi, XL. “Complexation–precipitation” metal separation method system and its application in secondary resources. Rare Met. 33, 369–378 (2014). https://doi.org/10.1007/s12598-014-0352-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-014-0352-x

Keywords

Navigation