Skip to main content
Log in

The Effects of Individual Addition of Sn, Nd, and Ca on the Microstructure, Mechanical Properties, and Corrosion Behavior of the Mg–Li–Al Alloy

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

In this study, Mg–8Li–2Al, Mg–8Li–2Al–1.5Sn, Mg–8Li–2Al–1.5Nd, and Mg–8Li–2Al–1.5Ca alloys were produced by the gravity die casting method. The effects of individual addition of Sn, Nd, and Ca on the microstructure, mechanical properties, and corrosion behavior of the Mg–8Li–2Al alloy were studied. The presence of intermetallic compounds (AlLi, Mg2Sn, Al2Nd, Al11Nd3, and Al2Ca) in the alloys, which affected the mechanical properties, was identified by X-ray diffraction analysis of the experimental alloys. Hardness and tensile tests were performed to determine the mechanical properties of the alloys. According to the hardness measurements, the addition of alloying elements increased the hardness of the alloys. The measurement of the tensile and compression tests shows that the best outcomes were achieved at Mg–8Li–2Al–1.5Sn alloy, compared to Mg–8Li–2Al alloy, with an increase of 18.3% in tensile stress and 34% in compression stress. Also, the tensile elongation value of Mg–8Li–2Al–1.5Sn alloy was measured as 10.4%, which was higher than the Mg–8Li–2Al–1.5Nd and Mg–8Li–2Al–1.5Ca alloys. Electrochemical corrosion test results showed that Mg–8Li–2Al–1.5Sn alloy had the lowest corrosion rate of 10.49 mpy, which is thought to be due to the formation of protective Mg2Sn phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Y. Yang, X. Xiong, J. Chen, X. Peng, D. Chen, F. Pan, Research advances in magnesium and magnesium alloys worldwide in 2020. J. Magnes. Alloys 9, 705–747 (2021). https://doi.org/10.1016/j.jma.2021.04.001

    Article  CAS  Google Scholar 

  2. J. Song, J. She, D. Chen, F. Pan, Latest research advances on magnesium and magnesium alloys worldwide. J. Magnes. Alloys 8, 1–41 (2020). https://doi.org/10.1016/j.jma.2020.02.003

    Article  CAS  Google Scholar 

  3. X.M. Xiong, Y. Yang, L.N. Ma, M.L. Li, F.J. Ren, J.W. Hu, G.B. Wei, X.D. Peng, Microstructure and mechanical properties of Mg–8Li–xAl–0.5Ca alloys. Mater. Sci. Technol. 35(1), 26–36 (2019). https://doi.org/10.1080/02670836.2018.153

    Article  CAS  Google Scholar 

  4. Y. Zhou, L. Bian, G. Chen, L. Wang, W. Liang, Influence of Ca addition on microstructural evolution and mechanical properties of near-eutectic Mg–Li alloys by copper-mold suction casting. J. Alloys Compd. 664, 85–91 (2016). https://doi.org/10.1016/j.jallcom.2015.12.198

    Article  CAS  Google Scholar 

  5. V. Kumar, Govind, R. Shekhar, R. Balasubramaniam, K. Balani, Microstructure evolution and texture development in thermomechanically processed Mg–Li–Al based alloys. Mater. Sci. Eng. A 547, 38–50 (2012). https://doi.org/10.1016/j.msea.2012.03.074

    Article  CAS  Google Scholar 

  6. R. Maurya, D. Mittal, K. Balani, Effect of heat-treatment on microstructure, mechanical and tribological properties of Mg–Li–Al based alloy. J. Mater. Res. Technol. 9(3), 4749–4762 (2020). https://doi.org/10.1016/j.jmrt.2020.02.101

    Article  CAS  Google Scholar 

  7. L. Ma, Y. Yang, X. Wang, X. Fu, J. Hu, H. Shau, X. Peng, Microstructure and mechanical properties of Mg–6Li–xAl–0.8Sn alloys. Mater. Sci. Technol. 34, 2078–2086 (2018). https://doi.org/10.1080/02670836.2018.1510071

    Article  CAS  Google Scholar 

  8. X. Fu, Y. Yang, J. Hu, J. Su, X. Zhang, X. Peng, Microstructure and mechanical properties of as-cast and extruded Mg–8Li–1Al–0.5Sn alloy. Mater. Sci. Eng. A 709, 247–253 (2018). https://doi.org/10.1016/j.msea.2017.10.036

    Article  CAS  Google Scholar 

  9. Y. Zou, L. Zhang, Y. Li, H. Wang, J. Liu, P.K. Liaw, H. Bei, Z. Zhang, Improvement of mechanical behaviors of a superlight Mg–Li base alloy by duplex phases and fine precipitates. J. Alloy. Compd. 735, 2625–2633 (2018). https://doi.org/10.1016/j.jallcom.2017.12.025

    Article  CAS  Google Scholar 

  10. X. Xiong, Y. Yang, H. Deng, M. Li, J. Li, G. Wei, X. Peng, Effect of Ca content on the mechanical properties and corrosion behaviors of extruded Mg–7Li–3Al alloys. Metals 9, 1212 (2019). https://doi.org/10.3390/met9111212

    Article  CAS  Google Scholar 

  11. B. Homayun, A. Afshar, Microstructure, mechanical properties, corrosion behavior and cytotoxicity of Mg–Zn–Al–Ca alloys as biodegradable materials. J. Alloys Compd. 607, 1–10 (2014). https://doi.org/10.1016/j.jallcom.2014.04.059

    Article  CAS  Google Scholar 

  12. R.Z. Wu, Z.K. Qu, M.L. Zhang, Reviews on the influences of alloying elements on the microstructure and mechanical properties of Mg–Li base alloys. Rev. Adv. Mater. Sci. 24, 35–43 (2010)

    CAS  Google Scholar 

  13. J.S. Zhang, Y. Sun, W.L. Cheng, Z.P. Que, Y.M. Li, L. Liushan, The effect of Ca addition on microstructures and mechanical properties of Mg-RE based alloys. J. Alloys Compd. 554, 110–114 (2013). https://doi.org/10.1016/j.jallcom.2012.11.094

    Article  CAS  Google Scholar 

  14. G.S. Song, M.V. Kral, Characterization of cast Mg–Li–Ca alloys. Mater. Charact. 54, 279–286 (2005). https://doi.org/10.1016/j.matchar.2004.12.001

    Article  CAS  Google Scholar 

  15. E.V. Parfenov, O.B. Kulyasova, V.R. Mukaeva, B. Mingo, R.G. Farrakhov, Y.V. Cherneikina, A. Yerokhin, Y.F. Zheng, R.Z. Valiev, Influence of ultra-fine grain structure on corrosion behaviour of biodegradable Mg–1Ca alloy. Corr. Sci. 163, 108303 (2020). https://doi.org/10.1016/j.corsci.2019.108303

    Article  CAS  Google Scholar 

  16. S.S. Nene, B.P. Kashyap, N. Prabhu, Y. Estrin, T. Al-Samman, Microstructure refinement and its effect on specific strength and bio-corrosion resistance in ultralight Mg–4Li–1Ca (LC41) alloy by hot rolling. J. Alloys Compd 615, 501–506 (2014). https://doi.org/10.1016/j.jallcom.2014.06.151

    Article  CAS  Google Scholar 

  17. B. Liu, M. Zhang, R. Wu, Effects of Nd on microstructure and mechanical properties of as-cast LA141 alloy. Mater. Sci. Eng. A 487, 347–351 (2008). https://doi.org/10.1016/j.msea.2007.10.073

    Article  CAS  Google Scholar 

  18. M. Li, H. Hao, A. Zhang, Y. Song, X. Zhang, Effects of Nd on microstructure and mechanical properties of as-cast Mg–8Li–3Al alloy. J. Rare Earths 30(5), 492 (2012). https://doi.org/10.1016/S1002-0721(12)60078-7

    Article  CAS  Google Scholar 

  19. A. Luo, M.O. Pekguleryuz, Cast magnesium alloys for elevated temperature applications. J. Mater. Sci. 29, 5259–5271 (1994). https://doi.org/10.1007/BF01171534

    Article  CAS  Google Scholar 

  20. Z. Qu, R. Wu, H. Zhan, M. Zhang, The solution and room temperature aging behavior of Mg–9Li–xAl (x = 3, 6) alloys. J. Alloy. Compd. 536, 145–149 (2012). https://doi.org/10.1016/j.jallcom.2012.05.021

    Article  CAS  Google Scholar 

  21. C. Zhao, X. Chen, F. Pan, S. Gao, D. Zhao, X. Liu, Effect of Sn content on strain hardening behavior of as-extruded Mg-Sn alloys. Mater. Sci. Eng. A 713, 244–252 (2018). https://doi.org/10.1016/j.msea.2017.12.074

    Article  CAS  Google Scholar 

  22. X.Y. Chen, Y. Zhang, M.Q. Cong, Y.L. Lu, X.P. Li, Effect of Sn content on microstructure and tensile properties of as-cast and as-extruded Mg−8Li−3Al−(1,2,3) Sn alloys. Trans. Nonferrous Met. Soc. China 30, 2079–2089 (2020). https://doi.org/10.1016/S1003-6326(20)65362-6

    Article  CAS  Google Scholar 

  23. Y. Zeng, B. Jiang, D. Huang, J. Dai, F. Pan, Effect of Ca addition on grain refinement of Mg–9Li–1Al alloy. J. Magnes. Alloys 1–4, 297–302 (2013). https://doi.org/10.1016/j.jma.2013.12.002

    Article  CAS  Google Scholar 

  24. T. Xu, X. Shen, B. Li, X. Peng, Q. Liu, G. Wei, G. Liu, Z. Ma, Effect of Nd on microstructure and mechanical properties of dual-phase Mg–9Li–3Al alloys. Mater. Res. Express 6, 076548 (2019). https://doi.org/10.1088/2053-1591/ab1543

    Article  CAS  Google Scholar 

  25. S. Mishra, A. Chaubey, A. Mandal, Effect of heat treatment on the microstructure of Mg–4Al–Nd alloys. Technologies 5, 23 (2017). https://doi.org/10.3390/technologies5020023

    Article  Google Scholar 

  26. P. Fei, Z. Qu, R. Wu, Microstructure and hardness of Mg–9Li–6Al–xLa (x = 0, 2, 5) alloys during solid solution treatment. Mater. Sci. Eng. A 625, 169–176 (2015). https://doi.org/10.1016/j.msea.2014.12.014

    Article  CAS  Google Scholar 

  27. B. Jiang, Y. Zeng, M.X. Zhang, H.M. Yin, Q.S. Yang, F.S. Pan, Effects of Sn on microstructure of as-cast and as-extruded Mg–9Li alloys. Trans. Nonferrous Met. Soc. China 23, 904908 (2013). https://doi.org/10.1016/S1003-6326(13)62546-7

    Article  CAS  Google Scholar 

  28. D.K. Xu, L. Liu, Y.B. Xu, E.H. Han, The influence of element Y on the mechanical properties of the as-extruded Mg–Zn–Y–Zr alloys. J. Alloys Compd. 426, 155–161 (2006). https://doi.org/10.1016/j.jallcom.2006.02.035

    Article  CAS  Google Scholar 

  29. S.Y. Park, J.G. Jung, J. Yoon, B.S. You, Influence of Sn addition on the microstructure and mechanical properties of extruded Mg–8Al–2Zn alloy. Mater. Sci. Eng. A 626, 128–135 (2015). https://doi.org/10.1016/j.msea.2014.12.039

    Article  CAS  Google Scholar 

  30. B.J. Wang, D.K. Xu, X. Cai, Y.X. Qiao, L.Y. Sheng, Effect of rolling ratios on the microstructural evolution and corrosion performance of an as-rolled Mg–8 wt% Li alloy. J. Magnes. Alloys 9, 560–568 (2021). https://doi.org/10.1016/j.jma.2020

    Article  CAS  Google Scholar 

  31. T. Morishige, H. Doi, T. Goto, E. Nakamura, T. Takenaka, Exfoliation corrosion behavior of cold-rolled Mg-14 mass% Li-1 mass% Al alloy in NaCl solution. Mater. Trans. 54(9), 1863–1866 (2013). https://doi.org/10.2320/matertrans.MAW201301

    Article  CAS  Google Scholar 

  32. R. Zeng, L. Sun, Y. Zheng, H. Cui, E. Han, Corrosion and characterisation of dual phase Mg–Li–Ca alloy in Hank’s solution: the influence of microstructural features. Corros. Sci. 79, 69–82 (2014). https://doi.org/10.1016/j.corsci.2013.10.028

    Article  CAS  Google Scholar 

  33. Y.S. Jeong, W.J. Kim, Enhancement of mechanical properties and corrosion resistance of Mg–Ca alloys through microstructural refinement by indirect extrusion. Corros. Sci. 82, 392–403 (2014). https://doi.org/10.1016/j.corsci.2014.01.041

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Sakarya University Scientific Research Projects Unit for supporting this work under contract number 2020-7-25-48.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sehzat Acikgoz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acikgoz, S., Kurnaz, S.C. The Effects of Individual Addition of Sn, Nd, and Ca on the Microstructure, Mechanical Properties, and Corrosion Behavior of the Mg–Li–Al Alloy. Inter Metalcast 17, 1580–1595 (2023). https://doi.org/10.1007/s40962-022-00869-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-022-00869-8

Keywords

Navigation