Skip to main content
Log in

Decomposition mechanisms and non-isothermal kinetics of LiHC2O4·H2O

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The thermal decomposition process of LiHC2O4·H2O from 30 to 600 °C was investigated by the thermogravimetric and differential scanning calorimetry (TG-DSC). The phases decomposited at different temperature were characterized by X-ray diffraction (XRD), which indicated the decompositions at 150, 170, and 420 °C, relating to LiHC2O4, Li2C2O4, Li2C2O4, and Li2CO3, respectively. Reaction mechanisms in the whole sintering process were determined, and the model fitting kinetic approaches were applied to data for non-isothermal thermal decomposition of LiHC2O4·H2O; finally, the kinetic parameters of each reaction were also calculated herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ohzuku T., Kitano S., Iwanaga M., Matsuno H., and Ueda A., Comparative study of Li[LixMn2−x ]O4 and LT-LiMnO2 for lithium-ion batteries, J. Power Sources, 1997, 68(2): 646.

    Article  CAS  Google Scholar 

  2. Thackeray M.M., Mansuetto M.F., and Bates J.B., Structural stability of LiMn2O4 electrodes for lithium batteries, J. Power Sources, 1997, 68(1): 153.

    Article  CAS  Google Scholar 

  3. Ceder G., Chiang Y.M., Sadoway D.R., Aydinol M.K., Jang Y.I., and Huang B., Identification of cathode materials for lithium batteries guided by first-principles calculations, Nature, 1998, 392: 694.

    Article  CAS  Google Scholar 

  4. Tarascon J.M., and Armand M., Issues and challenges facing rechargeable lithium batteries, Nature, 2001, 414: 359.

    Article  CAS  Google Scholar 

  5. Meng Y.S., Ceder G., Grey C.P., Yoon W.S., Jiang M., Bréger J., and Shao-Horn Y., Cation ordering in layered O3 Li[NixLi1/3−2x/3Mn2/3−x/3]O2 (0≤x≤1/2) compounds, Chem. Mater., 2005, 17(9): 2386.

    Article  CAS  Google Scholar 

  6. Armstrong A.R., Lyness C., Panchmatia P.M., Saiful M., and Bruce P.G., The lithium intercalation process in the lowvoltage lithium battery anode Li1+x V1−x O2, Nat. Mater., 2011, 10: 223.

    Article  CAS  Google Scholar 

  7. Li X.W., Lin Y.B., Lin Y., Lai H., and Huang Z.G., Surface modification of LiNi1/3Co1/3Mn1/3O2 with Cr2O3 for lithium ion batteries, Rare Metals, 2012, 31(2): 140.

    Article  Google Scholar 

  8. Armstrong A.R., Paterson A.J., Dupre N., Grey C.P., and Bruce P.G., Structural evolution of layered LixMnyO2: combined neutron, NMR, and electrochemical study, Chem. Mater., 2007, 19(5): 1016.

    Article  CAS  Google Scholar 

  9. Gregory Becht A., John Vaughey T., Britt Robin L., Eagle Cassandra T., and Hwu S.J., Ion exchange and electrochemical evaluation of the microporous phosphate Li9Fe7(PO4)10, Mater. Res. Bull., 2008, 43(12): 3389.

    Article  Google Scholar 

  10. Hirayama M., Tomita H., Kubota K., and Kanno R., Structure and electrode reactions of layered rocksalt LiFeO2 nanoparticles for lithium battery cathode, J. Power Sources, 2011, 196(16): 6809.

    Article  CAS  Google Scholar 

  11. Li L.-j., Li X.-h., Wang Z.-x., Guo H.-j., Yue P., Chen W., and Wu L., A simple and effective method to synthesize layered LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion battery, Powder Technol., 2011, 206(3): 353.

    Article  CAS  Google Scholar 

  12. Tabuchi M., Nabeshima Y., Ado K., Shikano M., and Kageyama H., Tatsumi K., Material design concept for Fe-substituted Li2MnO3-based positive electrodes, J. Power Sources, 2007, 174(2): 554.

    Article  CAS  Google Scholar 

  13. HU C.Y., Li Z., Guo J., Du Y., Wang X.Y., Liu X., and Yi T., Synthesis and electrochemical properties of Li[NixCoy-Mn1−xy ]O2 (x, y=2/8, 3/8) cathode materials for lithium ion batteries, Rare Metals, 2009, 28(1): 43.

    Article  Google Scholar 

  14. Li T., Qiu W.H., Zhao H.L., and Liu J.J., Effect of lithium content on the electrochemical properties of solid-statesynthesized spinel LixMn2O4, Rare Metals, 2007, 26(3): 280.

    Article  Google Scholar 

  15. Boulineau A., Croguennec L., Delmas C., and Weill F., Structure of Li2MnO3 with different degrees of defects, Solid State Ionics, 2010, 180: 1652.

    Article  CAS  Google Scholar 

  16. Kosova N.V., Devyatkina E.T., Kaichev V.V., and Slobodyuk A.B., From ‘core-shell’ to composite mixed cathode materials for rechargeable lithium batteries by mechanochemical process, Solid State Ionics, 2011, 192: 284.

    Article  CAS  Google Scholar 

  17. Lin Y., Zeng B. Z., Lin Y.B., Li X.W., Zhao G.Y., Zhou T., Lai H., and Huang Z.G., Electrochemical properties of carbon-coated LiFePO4 and LiFe0.98Mn0.02PO4 cathode materials synthesized by solid-state reaction, Rare Metals, 2012, 31(2): 145.

    Article  CAS  Google Scholar 

  18. Liu J.J., Qiu W.H., Yu L.Y., Zhao H.L., and Li T., Synthesis and electrochemical characterization of layered Li(Ni1/3Co1/3-Mn1/3)O2 cathode materials by low-temperature solid-state reaction, J. Alloys Compd., 2008, 449(1–2): 326.

    CAS  Google Scholar 

  19. Wei G.Z., Lu X., Ke F.S., Huang L., Li J.T., Wang Z.X., Zhou Z.Y., and Sun S.G., Crystal habit-tuned nanoplate material of Li[Li1/3−2x/3NixMn2/3−x/3]O2 for high-rate performance lithium-ion batteries, Adv. Mater., 2010, 22(39): 4364.

    Article  CAS  Google Scholar 

  20. Villepin De J., and Novak A., Neutron inelastic scattering spectra of strongly hydrogen bonded acid oxalates NaHC2O4, KHC2O4 and LiHC2O4, Chem. Phys., 1980, 48(1): 113.

    Article  Google Scholar 

  21. Coats A.W., and Redfern J.P., Kinetic parameters from thermogravimetric data, Nature, 1964, 201: 68.

    Article  CAS  Google Scholar 

  22. Malek J., The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses, Thermochim. Acta, 1995, 267: 61.

    Article  CAS  Google Scholar 

  23. Malek J., Kinetic analysis of crystallization processes in amorphous materials, Thermochim. Acta, 2000, 355: 239.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Lian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Lian, F. & Chou, KC. Decomposition mechanisms and non-isothermal kinetics of LiHC2O4·H2O. Rare Met. 31, 615–620 (2012). https://doi.org/10.1007/s12598-012-0568-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-012-0568-6

Keywords

Navigation