Skip to main content
Log in

The Synthesis and Investigation of Thermoelectric Properties of Cu4SnS4 at Elevated Temperatures

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Cu4SnS4 is a promising thermoelectric (TE) material due to its low thermal conductivity (\(\kappa\)) and relatively high electrical conductivity (\(\sigma\)) and Seebeck coefficient (S). In this research, Cu4SnS4 was synthesized from Cu, Sn, and S powders using the mechanical alloying (MA) method. The 16-h milled powders were heat-treated and consolidated by spark plasma sintering at 873 K. TE properties of the 16-h milled sintered sample was investigated at elevated temperatures. It was observed that the formation of Cu3SnS4 began after 8 h and completed after 16 h of milling, whereby the resulting material exhibited fine particle sizes, ranging from 0.2 to 1.3 µm. Cu4SnS4 was formed after the heat treatment of the 16-h milled powder at 673 K, with a thermal stability up to 923 K. The band gap of the heat-treated powder was 1.62 eV. The values of power factor and the dimensionless figure of merit (ZT) increased dramatically with increasing temperature, until the maximum values of 174.4 µW/m K2 and 0.05, respectively, were achieved at 723 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data available on request from authors.

References

  1. D.L. Bui, H.T. Le, K. Suekuni et al., Thermoelectric Quaternary Sulfide Cu2+xZn1xSnS4 (x = 0-0.3): Effects of Cu Substitution for Zn, Mater. Sci. Eng. B., 2021, 272, p 115353. https://doi.org/10.1016/j.mseb.2021.115353

    Article  CAS  Google Scholar 

  2. Zh. Zhen, Zh. Huiwen, W. Yifeng et al., Role of Crystal Transformation on the Enhanced Thermoelectric Performance in Mn-Doped Cu2SnS3, J. Alloys Compd., 2019, 780, p 618–625. https://doi.org/10.1016/j.jallcom.2018.11.329

    Article  CAS  Google Scholar 

  3. U. Chalapathi, B. Poornaprakash, and P. Si-Hyun, Two-Stage Processed Cu4SnS4 Thin Films for Photovoltaics: Effect of (N2+S2) Pressure during Annealing, Thin Solid Films, 2018, 660, p 236–241. https://doi.org/10.1016/j.tsf.2018.06.008

    Article  CAS  Google Scholar 

  4. R.M.R. Vasudeva and R.P. Mohan, Review on Cu2SnS3, Cu3SnS4, and Cu4SnS4 Thin Films and their Photovoltaic Performance, J. Ind. Eng. Chem., 2019, 76, p 39–74. https://doi.org/10.1016/j.jiec.2019.03.035

    Article  CAS  Google Scholar 

  5. A.C. Lokhande, P. Amar, A. Shelke, P.T. Babar, M.G. Gang, V.C. Lokhande, S.D. Dattatray, C.D. Lokhande and H.K. Jin, Binder-Free Novel Cu4SnS4 Electrode for High-Performance Supercapacitors, Electrochim. Acta, 2018, 284, p 80–88. https://doi.org/10.1016/j.electacta.2018.07.170

    Article  CAS  Google Scholar 

  6. Ch. Amitava, M. Sudip, Y. Hooman et al., New Insights into the Structure, Chemistry, and Properties of Cu4SnS4, J. Solid State Chem., 2017, 253, p 192–201. https://doi.org/10.1016/j.jssc.2017.05.033

    Article  CAS  Google Scholar 

  7. A.C. Lokhande, A.A. Yadav, L. JuYeon et al., Room Temperature Liquefied Petroleum Gas Sensing Using Cu2SnS3/CdS Heterojunction, J. Alloys Compd., 2017, 709, p 92–103. https://doi.org/10.1016/j.jallcom.2017.03.135

    Article  CAS  Google Scholar 

  8. A. David, M.T.S. Nair, and P.K. Nair, Cu2SnS3 and Cu4SnS4 Thin Films via Chemical Deposition for Photovoltaic Application, J. Electrochem. Soc., 2010, 157(6), p 346–352. https://doi.org/10.1149/1.3384660

    Article  CAS  Google Scholar 

  9. H.D. Shelke, A.A. Mohite, A.P. Torane, K.V. Madhale, and C.D. Lokhande, Effect of Cu4SnS4 Layer Thickness on the Photovoltaic Parameters of Photoelectrochemical Solar Cells, ES Mater. Manuf., 2022, 18, p 66–76. https://doi.org/10.30919/esmm5f724

    Article  CAS  Google Scholar 

  10. X. Zhang, Y. Tang, Y. Wang, L. Shen, A. Gupta, and N. Bao, Simple One-Pot Synthesis of Cu4SnS4 Nanoplates and Temperature-Induced Phase Transformation Mechanism, CrystEngComm, 2020, 22, p 1220–1229. https://doi.org/10.1039/C9CE01772K

    Article  CAS  Google Scholar 

  11. S. Jaulmes, J. Rivet, and P. Laruelle, Cuivre-Etain-Soufre Cu4SnS4, Acta Crystallogr. Tallogr. Sect. B, 1977, 33, p 540–542.

    Article  Google Scholar 

  12. D. Wu, C.R. Knowles, and L.L.Y. Chang, Copper-Tin Sulphides in the System Cu-Sn-S, Miner. Mag., 1986, 50, p 323–325. https://doi.org/10.1180/minmag.1986.050.356.20

    Article  CAS  Google Scholar 

  13. S. Akitoshi, N. Naoyuki, K. Youhei et al., Presence of a Doubly-Splitting Site and Its Effect on Thermoelectric Properties of Cu4SnS4, Mater. Trans., 2015, 56(6), p 858–863. https://doi.org/10.2320/matertrans.E-M2015804

    Article  CAS  Google Scholar 

  14. H. Hasaka, T. Morimur, T. Aki, and S. Kondo, Thermoelectric properties and structure of sintered compact of Cu:Sn:S=8:1:4, in 15th International Conference on Thermoelectrics, ICT, Proceedings; (1996), pp 159–163.

  15. H. Masayuki, A. Takafusa, M. Takao et al., Thermoelectric Properties of Cu-Sn-S, Energy Conoers. Manag., 1997, 38(9), p 855–859. https://doi.org/10.1016/S0196-8904(96)00098-2

    Article  Google Scholar 

  16. N. Naoyuki, S. Akitoshi, and A. Ryoji, Correlation between Thermal-Vibration-Induced Large Displacement of Cu Atoms and Phase Transition in Cu4SnS4: First-Principles Investigation, Acta Mater., 2019, 166, p 37–46. https://doi.org/10.1016/j.actamat.2018.11.058

    Article  CAS  Google Scholar 

  17. G. Yosuke, K. Yoichi, and M. Masanori, Effect of Indium Substitution on the Thermoelectric Properties of Orthorhombic Cu4SnS4, J. Electro. Mater., 2014, 43(6), p 2202–2205. https://doi.org/10.1007/s11664-014-3007-7

    Article  CAS  Google Scholar 

  18. Ch. Qinmiao, D. Xiaoming, L. Zhenqing et al., Study on the Photovoltaic Property of Cu4SnS4 Synthesized by Mechanochemical Process, Optik, 2014, 125(13), p 3217–3220. https://doi.org/10.1016/j.ijleo.2013.12.023

    Article  CAS  Google Scholar 

  19. P. Albert, Sh. Sadasivan, K. Bindu et al., Effect of Copper Precursor Layer Thickness on the Properties of Preferentially Oriented Cu4SnS4 Thin Films for Photovoltaic Applications, Opt. Mater., 2021, 120, 111423. https://doi.org/10.1016/j.optmat.2021.111423

    Article  CAS  Google Scholar 

  20. C. Suryanarayana, Mechanical Alloying and Milling, Prog. Mater. Sci., 2001, 46(1–2), p 1–184. https://doi.org/10.1016/S0079-6425(99)00010-9

    Article  CAS  Google Scholar 

  21. J. Schilz, M. Riffel, K. Pixius, and H.J. Meyer, Synthesis of Thermoelectric Materials by Mechanical Alloying in Planetary Ball Mills, Powder Technol., 1999, 105, p 149–154. https://doi.org/10.1016/S0032-5910(99)00130-8

    Article  CAS  Google Scholar 

  22. A.O. Moghaddam, A. Shokuhfar, A. Cabot, and A. Zolriasatein, Synthesis of Bornite Cu5FeS4 Nanoparticles via High Energy Ball Milling: Photocatalytic and Thermoelectric Properties, Powder Technol., 2018, 333, p 160–166. https://doi.org/10.1016/j.powtec.2018.04.023

    Article  CAS  Google Scholar 

  23. M.C. Barma, B.D. Long, M.F.M. Sabri et al., Synthesis of Cu3.21Bi4.79S9 Bismuth Chalcogenide by Mechanical Alloying, Powder Technol., 2016, 294, p 348–352. https://doi.org/10.1016/j.powtec.2016.03.002

    Article  CAS  Google Scholar 

  24. D.L. Bui, V.K. Nguyen, N.B. Duong et al., Thermoelectric Properties of Quaternary Chalcogenide Cu2ZnSnS4 Synthesised by Mechanical Alloying, Powder Metall., 2020, 63(3), p 220–226. https://doi.org/10.1080/00325899.2020.1783103

    Article  CAS  Google Scholar 

  25. B.D. Long, H. Zuhailawatia, M. Umemotob, Y. Todakab, and Y. Othman, Effect of Ethanol on the Formation and Properties of a Cu-NbC Composite, J. Alloys Compd., 2010, 503, p 228–232. https://doi.org/10.1016/j.jallcom.2010.04.243

    Article  CAS  Google Scholar 

  26. L. Min-Ling, H. Fu-Qiang, C. Li-Dong et al., A Wide-Band-Gap p-Type Thermoelectric Material Based on Quaternary Chalcogenides of Cu2ZnSnQ4, (Q = S, Se), Appl. Phys. Lett., 2009, 94, 202103. https://doi.org/10.1063/1.3130718

    Article  CAS  Google Scholar 

  27. I.G. Austin, The Optical Properties of Bismuth Telluride, Proc. Phys. Soc., 1958, 72, p 545. https://doi.org/10.1088/0370-1328/72/4/309

    Article  CAS  Google Scholar 

  28. J.O. Sofo and G.D. Mahan, Electronic structure of CoSb3: a narrow-band-gap semiconductor, Phys. Rev. B, 1998, 58(23), p 15620. https://doi.org/10.1103/PhysRevB.58.15620

    Article  CAS  Google Scholar 

  29. Y. Saberi and S.A. Sajjadi, A comprehensive review on the effects of doping process on the thermoelectric properties of Bi2Te3 based alloys, J. Alloys Compd., 2020, 904(25), p 163918. https://doi.org/10.1016/j.jallcom.2022.163918

    Article  CAS  Google Scholar 

  30. Y.Z. Pei, L.D. Chen, W. Zhang, X. Shi, S.Q. Bai, X.Y. Zhao, Z.G. Mei, and X.Y. Li, Synthesis and Thermoelectric Properties of KyCo4Sb12, Appl. Phys. Lett., 2006, 89, 221107. https://doi.org/10.1063/1.2397538

    Article  CAS  Google Scholar 

  31. M.L. Liu, I.W. Chen, F.Q. Huang, and L.D. Chen, Improved Thermoelectric Properties of Cu-Doped Quaternary Chalcogenides of Cu2CdSnSe4, Adv. Mater., 2009, 21(37), p 3808–3812. https://doi.org/10.1002/adma.200900409

    Article  CAS  Google Scholar 

  32. X. Yan, G. Joshi, W. Liu, Y. Lan, H. Wang et al., Enhanced Thermoelectric Figure of Merit of p-Type Half-Heuslers, Nano Lett., 2011, 11, p 556–560. https://doi.org/10.1021/nl104138t

    Article  CAS  PubMed  Google Scholar 

  33. B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich et al., High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys, Science, 2008, 320, p 634. https://doi.org/10.1126/science.1156446

    Article  CAS  PubMed  Google Scholar 

  34. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu et al., Enhanced Thermoelectric Fgiure-of-Merit in NANOSTRUCTURED p-Type Silicon Germanium Bulk Alloys, Nano Lett., 2008, 8(12), p 4670–4674. https://doi.org/10.1021/nl8026795

    Article  CAS  PubMed  Google Scholar 

  35. Ch. Fu, H. Wu, Y. Liu, J. He, X. Zhao, and T. Zhu, Enhancing the Figure of Merit of Heavy-Band Thermoelectric Materials Through Hierarchical Phonon Scattering, Adv. Sci., 2016, 8, p 1600035. https://doi.org/10.1002/advs.201600035

    Article  CAS  Google Scholar 

  36. S. Biswas, S. Singh, Sh. Singh, Sh. Chattopadhyay et al., Selective Enhancement in Phonon Scattering Leads to a High Thermoelectric Figure-of-Merit in Graphene Oxide-Encapsulated ZnO Nanocomposites, ACS Appl. Mater. Interfaces, 2021, 13, p 23771–23786. https://doi.org/10.1021/acsami.1c04125

    Article  CAS  PubMed  Google Scholar 

  37. J. He, J.R. Sootsman, S.N. Girard, JCh. Zheng, J. Wen et al., On the Origin of Increased Phonon Scattering in Nanostructured PbTe Based Thermoelectric Materials, J. Am. Chem. Soc., 2010, 132, p 8669–8675. https://doi.org/10.1021/ja1010948

    Article  CAS  PubMed  Google Scholar 

  38. Zh. Lulu, L. Naiming, H. Zhongkang et al., Regulation of the Crystal Structure Leading to the Bandgap Widening and Phonon Scattering Increasing in Cu3SnS4-Cu3SbSe3 Chalcogenides, Adv. Electron. Mater., 2019, 5(10), p 1900485. https://doi.org/10.1002/aelm.201900485

    Article  CAS  Google Scholar 

  39. F.S. Liu, J.X. Zheng, M.J. Huang et al., Enhanced Thermoelectric Performance of Cu2CdSnSe4 by Mn Doping: Experimental and First Principles Studies, Sci. Rep., 2014, 4, p 5774. https://doi.org/10.1038/srep05774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This research is funded by Hanoi University of Science and Engineering (HUST) under project number T2022-PC-082.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bui Duc Long.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 872 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, B.D., Bang, L.T., Trung, T.B. et al. The Synthesis and Investigation of Thermoelectric Properties of Cu4SnS4 at Elevated Temperatures. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09519-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09519-y

Keywords

Navigation