Skip to main content
Log in

Synthesis and electrochemical performance of LiMnPO4/C composites cathode materials

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

LiMnPO4/C composites were synthesized via solid-state reaction with different carbon sources: sucrose, citric acid and oxalic acid. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical performance test. The results of XRD reveal that carbon coating has no effect on the phase of LiMnPO4. The LiMnPO4/C synthesized at 600 °C with citric acid as carbon source shows an initial discharge capacity of 117.8 mAh·g−1 at 0.05 C rate. After 30 cycles, the capacity remains 98.2 mAh·g−1. The improved electrochemical properties of LiMnPO4/C is attributed to the decomposition of organic acid during the sintering process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morgan D., Van A.D.V., and Ceder G., Li conductivity in LixMPO4 (M=Mn, Fe, Co, Ni) olivine materials, Eletrochem. Solid-State Lett., 2004, 7(11): 30.

    Article  Google Scholar 

  2. Ouyang C.Y., Shi S.Q., Wang Z.X., Huang X.J., and Chen L.Q., First-principles study of Li ion diffusion in LiFePO4, Phys. Rev., 2004, 69(10): 104303.

    Article  Google Scholar 

  3. Islam M.S., Driscoll D.J., Fisher C.A.J., and Slater P.R., Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material, Chem. Mater., 2005, 17(20): 5085.

    Article  CAS  Google Scholar 

  4. Yonemura M., Yamada A., Takei Y., Sonoyama N., and Kanno R., Comparative kinetic study of olivine LixMPO4 (M = Fe, Mn), J. Electrochem. Soc., 2004, 151(9): 1352.

    Article  Google Scholar 

  5. Fang H.S., Pan Z.Y., Li L.P., Yang Y., Yan G.F., Li G.S., and Wei S.Q., The possibility of manganese disorder in LiMnPO4 and its effect on the electrochemical activity, Electrochem. Commun., 2008, 10(7): 1071.

    Article  CAS  Google Scholar 

  6. Yamada A., Kudo Y., and Liu K.Y., Optimized LiFePO4 for lithium battery cathodes, J. Electrochem. Soc., 2001, 148(3): 1153.

    Article  Google Scholar 

  7. Wang Y.R., Yang Y.F., Yang Y.B., and Shao H.X., Enhanced electrochemical performance of unique morphological cathode material prepared by solvothermal method, Solid State Commun., 2010, 150(1–2): 81.

    Article  CAS  Google Scholar 

  8. Kwon N.-H., Drezen T., Exnar I., Teerlinck I., Isono M., and Grätzel M., Enhanced electrochemical performance of mesoparticulate LiMnPO4 for lithium ion batteries, Electrochem. Solid-State Lett., 2006, 9(6): 277.

    Article  Google Scholar 

  9. Delacourt C., Laffont L., Bouchet R., Wurm C., Leriche J.-B., Morcrette M., Tarascon J.-M., and Masquelier C., Size effects on carbon-free LiFePO4 powders, J. Electrochem. Soc., 2005, 152(7): 913.

    Article  Google Scholar 

  10. Herle P.S., Ellis B., Coombs N., and Nazar L.F., Nano-network electronic conduction in iron and nickel olivine phosphates, Nat. Mater., 2004, 3: 147.

    Article  CAS  Google Scholar 

  11. Liu M.Z., Guo X.Y., Synthesis and performance of Li3V2-(PO4)3/C composites as cathode materials, Rare Metals., 2008, 27(6): 571.

    CAS  Google Scholar 

  12. Huang H., Yin S.C., and Nazar L.F., Approaching theoretical capacity of LiFePO4 at room temperature at high rates, Eletrochem. Solid-State Lett., 2001, 4(10): 170.

    Article  Google Scholar 

  13. Murugan A.V., Muraliganth T., and Manthiram A., One-pot microwave-hydrothermal synthesis and characterization of carbon-coated LiMPO4 (M= Mn, Fe, and Co) cathodes, J. Electrochem. Soc., 2009, 156(2): 79.

    Article  Google Scholar 

  14. Zhang Y., Sun C.S., and Zhou Z., Sol-gel preparation and electrochemical performances of LiFe1/3Mn1/3Co1/3PO4/C composites with core-shell nanostructure, Electrochem. Commun., 2009, 11(2): 1183.

    Article  CAS  Google Scholar 

  15. Mi C.H., Zhao X.B., Cao G.S., and Tu J.P., J. In situ synthesis and properties of carbon-coated LiFePO4 as Li-ion battery cathodes, Electrochem. Soc., 2005, 152(3): 483.

    Article  Google Scholar 

  16. Myung S.T., Komaba S., Hirosaki N., Yashiro H., and Kumagai N., Hydrothermal synthesis of layered Li[Ni1/3Co1/3Mn1/3]O2 as positive electrode material for lithium secondary battery. Electrochim. Acta, 2005, 49(24): 4213.

    Article  Google Scholar 

  17. Huang H., Yin S.C., and Nazar L.F., Approaching theoretical capacity of LiFePO4 at room temperature at high rates, Electrochem. Solid-State Lett., 2001, 4(10): 170.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, S., Xu, Y., Li, Y. et al. Synthesis and electrochemical performance of LiMnPO4/C composites cathode materials. Rare Metals 31, 474–478 (2012). https://doi.org/10.1007/s12598-012-0542-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-012-0542-3

Keywords

Navigation