Skip to main content

Advertisement

Log in

Elevated temperature endurance and creep properties of extruded 2D70 Al alloy rods

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The elevated temperature performances of 2D70 Al alloy hot extrusion rods after two-stage homogenization and intensive deformation were studied by measuring the elevated temperature enduring strength and the creep ultimate strength. The fracture morphology of some selected samples after testing at different elevated temperatures was observed by scanning electron microscopy (SEM). The results indicate that, as the test temperature increases, the elevated temperature enduring strength of 2D70 Al alloy decreases gradually. In a comparison between 150°C and 240°C, the notch enduring strength drops from 375 to 185 MPa and the smooth enduring strength drops from 337 to 130 MPa. Enduring strength is not sensitive to the notch. The notch sensitivity ratio (NSR) coefficient is in the range of 1.119 to 1.423 from 150°C to 240°C. The creep test results show that, as the test temperature increases from 150°C to 240°C, the creep ultimate strength of 2D70 Al alloy rods drops gradually from 312 to 117 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nový F., Janeček M., and Král R., Microstructure change in a 2618 aluminium alloy during ageing and creep, J. Alloys Compd., 2009, 487: 146.

    Article  Google Scholar 

  2. Bergsma S.C., Li X., and Kassner M.E., Effects of thermal processing and copper additions on the mechanical properties of aluminum alloy ingot AA 2618, J. Mater. Eng. Perform., 1996, 5(1): 100.

    Article  CAS  Google Scholar 

  3. Wang J.H., Yi D.Q., Su X.P., and Yin F.C., Influence of deformation ageing treatment on microstructures and properties of aluminum alloy 2618, Mater. Charact., 2008, 59(7): 965.

    Article  CAS  Google Scholar 

  4. Wang J.H., Study on Microstructures and Mechanical Properties of Heat Resistance Aluminum Alloy 2618 [Dissertation], Central South University, Changsha, 2003: 5.

    Google Scholar 

  5. Bardi F., Cabibbo M., and Spigarelli S., An analysis of thermo-mechanical treatments of a 2618 aluminium alloy: study of optimum conditions for warm forging, Mater. Sci. Eng. A, 2002, 334: 87.

    Article  Google Scholar 

  6. Yu K., Li W.X., Li S.R., and Zhao J., Mechanical properties and microstructures of aluminum alloy 2618 with Al3(Sc, Zr) phases, Mater. Sci. Eng. A, 2004, 368: 88.

    Article  Google Scholar 

  7. Majimel J., Molénat G., Casanove M.J., Schuster D., Denquin A., and Lapasset G., Investigation of the evolution of hardening precipitates during thermal exposure or creep of a 2650 aluminium alloy, Scripta Mater., 2002, 46(2): 113.

    Article  CAS  Google Scholar 

  8. Roldan M. and Sifferlent R., Creep strain mechanisms of an Al-Cu-Mg-Ni Alloy (Al-2.5% Cu-1.5% Mg-1.2% Ni) forged after quenching and recovery treatment, Acta Metall., 1972, 20: 829.

    Article  CAS  Google Scholar 

  9. Singer R. and Blum W., The influence of thermomechanical treatments on the creep resistance of RR58 at elevated temperature, Z. Metallkd., 1977, 68: 328.

    CAS  Google Scholar 

  10. Wang G.J., Xiong B.Q., Zhang Y.A., Li Z.H., and Li P.Y., Microstructural characterization of as-cast and homogenized 2D70 aluminum alloy, Int., J. Miner. Metal. Mater., 2009, 16(4): 427.

    Article  Google Scholar 

  11. Yang S.J., Huang M., Zhu N., and Dai S.L., Study on the thermal stability of 2D70 alloy, J. Aeronaut. Mater., 2003, 23(Supp1.): 73.

    Google Scholar 

  12. Zheng X.L, Wang H., Zheng M.S., and Wang F.H., Notch Strength and Notch Sensitivity of Materials, Science Press, Beijing, 2008.

    Google Scholar 

  13. Li P.Y, Xiong B.Q., Zhang Y.A., Li Z.H., Wang G.J., and Zhu B.H., As-cast constituents of 2D70 heat-resistance aluminum alloy, Chin. J. Rare Met., 2011, 35(1): 1.

    CAS  Google Scholar 

  14. Srivatsan T.S., Lanning D.Jr., and Soni K.K., Microstructure, tensile properties and fracture behaviour of an Al-Cu-Mg alloy 2124, J. Mater. Sci., 1993, 28: 3205.

    Article  CAS  Google Scholar 

  15. Xu J.Q., Strength of Materials, Shanghai Jiaotong University Press, Shanghai, 2009: 56.

    Google Scholar 

  16. Hutchinson C.R., Fan X., Pennycook S.J., and Shiflet G.J., On the origin of the high coarsening resistance of plates in Al-Cu-Mg-Ag alloys, Acta Mater., 2001, 49: 2827.

    Article  CAS  Google Scholar 

  17. Barbaux Y., Pons G., and Lapasset G., New creep resistance aluminium alloys for the future supersonic civil transport aircraft, [in] Proceedings of the 5th European Conference on Advanced Materials, Processes and Applications, Padova, Italy, 1995: 105.

  18. Lumley R.N., Morton A.J., and Polmear I.J., Enhanced creep performance in an Al-Cu-Mg-Ag alloy through underageing, Acta Mater., 2002, 50: 3597.

    Article  CAS  Google Scholar 

  19. Ringer S.P., Hono K., Polmear I.J., and Sakurai T., Nucleation of precipitates in aged Al-Cu-Mg-(Ag) alloys with high Cu: Mg ratios, Acta Mater., 1996, 44(5): 1883.

    Article  CAS  Google Scholar 

  20. Vietz J.T. and Polmear I.J., The influence of small additions of silver on the ageing of aluminium alloys: observations on Al-Cu-Mg alloys, J. Inst Met., 1966, 94: 410.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guojun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Xiong, B., Zhang, Y. et al. Elevated temperature endurance and creep properties of extruded 2D70 Al alloy rods. Rare Metals 30, 310–315 (2011). https://doi.org/10.1007/s12598-011-0389-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-011-0389-z

Keywords

Navigation