Skip to main content
Log in

Microstructural characterization of titanium matrix composite coatings reinforced by in situ synthesized TiB + TiC fabricated on Ti6Al4V by laser cladding

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Titanium-based composite coatings reinforced by in situ synthesized TiB and TiC particles between titanium and B4C were successfully fabricated on Ti6Al4V by laser cladding. Phase constituents of the coatings were predicted by thermodynamic calculations in the Ti-B4C-Al and Ti-B-C-Al systems, respectively, and were validated well by X-ray diffraction (XRD) analysis results. Microstructural and metallographic analyses were made by scanning electron microscopy (SEM) and electron probe micro-analysis (EPMA). The results show that the coatings are mainly composed of α-Ti cellular dendrites and the eutecticum in which a large number of needle-shaped TiB and a few equiaxial TiC particles are embedded. C is enriched in α-Ti cellular dendrites and far exceeds the theoretical maximum dissolubility, owing to the extension of saturation during laser cladding. The coatings have a good metallurgical bond with the substrate due to the existence of the dilution zone, in which a great amount of lamella β-Ti grains consisting of a thin needle-shaped martensitic microstructure are present and grow parallel to the heat flux direction; a few TiB and TiC reinforcements are observed at the boundaries of initial β-Ti grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Man H.C., Zhang S., Chengl F.T., and Yue T.M., Microstructure and formation mechanism of in situ synthesized TiC/Ti surface MMC on Ti-6Al-4V by laser cladding, Scripta Mater., 2001, 44: 2801.

    Article  CAS  Google Scholar 

  2. Sun R.L., Yang D.Z., Guo L.X., and Dong S.L., Laser cladding of Ti-6Al-4V alloy with TiC and TiC+NiCrBSi powders, Surf. Coat. Technol., 2001, 135: 307.

    Article  CAS  Google Scholar 

  3. Yang Y.L., Zhang D., Kou H.S., and Liu C. S., Laser cladded TiCN coatings on the surface of titanium, Acta Metall. Sin. Engl. Lett., 2007, 20(3): 210.

    CAS  Google Scholar 

  4. Paldey S. and Deevi S.C., Properties of single layer and gradient (Ti,Al)N coatings, Mater. Sci. Eng. A, 2003, 361: 1.

    Article  Google Scholar 

  5. Piscanec S., Ciacchi L.C., Vesselli E., Comelli G., Sbaizero O., Meriani S., and De Vita A., Bioactivity of TiN-coated titanium implants, Acta Mater., 2004, 52: 1237.

    Article  CAS  Google Scholar 

  6. Meng Q.W., Geng T.L., and Zhang B.Y., Laser cladding of Ni-base composite coatings onto Ti-6Al-4V substrates with pre-placed B4C+NiCrBSi powders, Surf. Coat. Technol., 2006, 200: 4923.

    Article  CAS  Google Scholar 

  7. Conde A., Zubiri F., and de Damborenea Y.J., Cladding of Ni-Cr-B-Si coatings with a high power diode laser, Mater. Sci. Eng. A, 2002, 334: 233.

    Article  Google Scholar 

  8. Yang S., Zhong M.L., and Liu W.J., TiC particulate composite coating produced in situ by laser cladding, Mater. Sci. Eng. A, 2003, 343: 57.

    Article  Google Scholar 

  9. Vreeling J.A., Ocelik V., and De Hosson J.T.M., Ti-6Al-4V strengthened by laser melt injection of WCp particles, Acta Mater., 2002, 50: 4913.

    Article  CAS  Google Scholar 

  10. Zhang Y.M., Hida M., Sakakibara A., and Takemotoet Y., Effect of WC addition on microstructures of laser melted Ni-based alloy powder, Surf. Coat. Technol., 2003, 169–170: 384.

    Article  Google Scholar 

  11. Przybylowicz J. and Kusinski J., Structure of laser cladded tungsten carbide composite coatings, J. Mater. Process. Technol., 2001, 109: 154.

    Article  CAS  Google Scholar 

  12. Liu R., Lei T., and Guo L., Stratification mechanism and interface characterization of (TiN), (TiC)/NiCrBSi composite coatings synthesized by laser remelting, Surf. Rev. Lett., 2004, 11: 291.

    Article  CAS  Google Scholar 

  13. Wang, X., Zhang M., Zou Z., and Qu S., Microstructure and properties of laser clad TiC+NiCrBSi+rare earth composite coatings, Surf. Coat. Technol., 2002, 161: 195.

    Article  CAS  Google Scholar 

  14. Chen Y. and Wang H.M., Growth morphology and mechanism of primary TiC carbide in laser clad TiC/FeAl composite coating, Mater. Lett., 2003, 57: 1233.

    Article  CAS  Google Scholar 

  15. Sun R.L., Yang D.Z., Guo L.X., and Dong S.L., Laser cladding of Ti-6Al-4V alloy with TiC and TiC+NiCrBSi powders, Surf. Coat. Technol., 2001, 135: 307.

    Article  CAS  Google Scholar 

  16. Mridha S. and Baker T.N., Composite layer formation on Ti-6AI-4V surfaces by laser treatment using preplaced SiC powder, Surf. Eng., 1997, 13: 233.

    CAS  Google Scholar 

  17. Ouyang J.H., Nowotny S., Richter A., and Beyer E., Characterization of laser clad yttria partially-stabilized ZrO2 ceramic layers on steel 16MnCr5, Surf. Coat. Technol., 2001, 137: 12.

    Article  CAS  Google Scholar 

  18. Wang H.M., Yu Y.L., and Li S.Q., Microstructure and tribological properties of laser clad CaF2/Al2O3 self-lubrication wear-resistant ceramic matrix composite coatings, Scripta Mater., 2002, 47: 57.

    Article  CAS  Google Scholar 

  19. Tani T., Processing, microstructure and properties of in-situ reinforced SiC matrix composites, Compos. Part A, 1999, 30: 419.

    Article  MathSciNet  Google Scholar 

  20. Ralph B., Yuen H.C., and Lee W.B., The processing of metal matrix composites-an overview, J. Mater. Process. Technol., 1997, 63: 339.

    Article  Google Scholar 

  21. Tong X.C. and Ghosh A.K., Fabrication of in situ TiC reinforced aluminum matrix composites, J. Mater. Sci., 2001, 36: 4059.

    Article  CAS  Google Scholar 

  22. Cai L.F., Zhang Y.Z., and Shi L.K., Microstructure and formation mechanism of titanium matrix composites coating on Ti-6Al-4V by laser cladding, Rare Met., 2007, 26: 342.

    Article  CAS  Google Scholar 

  23. Qin Y.X., Zhang D., Lu W.J., and Pan W., A new high-temperature, oxidation-resistant in situ TiB and TiC reinforced Ti6242 alloy, J. Alloy Compd., 2008, 455: 369.

    Article  CAS  Google Scholar 

  24. Ye D.L., Practical Inorganic Thermodynamics Manual, Metallurgy Industry Press, Beijing, 2002: 57.

    Google Scholar 

  25. Merzhanov A.G. and Borovinskaya I.P., New class of combustion processes, Combust. Sci. Technol., 1975, 10: 195.

    Article  CAS  Google Scholar 

  26. Leyens C. and Peters M., Titanium and Titanium Alloys, Chemical Industry Press, Beijing, 2006: 17.

    Google Scholar 

  27. ЛЯКИШЕВ Н.П., Phase Diagrams for Binary Alloys, Chemical Industry Press, Beijing, 2009: 208.

    Google Scholar 

  28. Lu W.J., Zhang D., Zhang X.N., Wu R.J., and Sakatac T., Microstructural characterization of TiC in in situ synthesized titanium matrix composites prepared by common casting technique, J. Alloy Compd., 2001, 327: 248.

    Article  CAS  Google Scholar 

  29. Zhang X.N., Lu W.J., Zhang D., and Wu R.J., In situ technique for synthesizing (TiB+TiC)/Ti composites, Scripta Mater., 1999, 41: 39.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Yu, Z., Wang, H. et al. Microstructural characterization of titanium matrix composite coatings reinforced by in situ synthesized TiB + TiC fabricated on Ti6Al4V by laser cladding. Rare Metals 29, 465–472 (2010). https://doi.org/10.1007/s12598-010-0151-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-010-0151-y

Keywords

Navigation