Skip to main content
Log in

Morphology, Microstructure and Improved Mechanical Properties of TiB2/TiB/TiN Reinforced Ti3Al Matrix Composite Coating with ZrO2 Addition

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Ti3Al matrix composite coatings were synthesized on a TC4 titanium alloy with Ti, Al and BN mixed powder by in situ laser cladding. Then, the effect of ZrO2 addition to the composite coatings was investigated. The phase composition, microstructure and element distribution of the composite coatings were characterized by scanning electron microscopy, x-ray diffraction and electron probe microanalysis. Results showed that the Ti3Al matrix composite coatings were reinforced by TiB2, TiB and TiN phases. The quality and mechanical properties of the composite coating can be significantly improved with ZrO2 addition under optimum laser power of 1000 W. The microhardness of the composite coatings was 2-3 times higher than that of the substrate, and the wear resistance of the composite coating without and with ZrO2 addition was enhanced by nearly 4 and 7 times compared to the substrate. The better properties of the composite coating with ZrO2 addition were mainly attributed to the formation of a ZrO2 network. The network-like distribution of ZrO2 provided dispersion strengthening and grain refinement effects. This research is expected to provide a new coating material to obtain high-performance Ti3Al matrix composite coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C. Leyens and M. Peters, Titanium and Titanium Alloys, Wiley-VCH, Cologne, 2003

    Google Scholar 

  2. E.O. Ezugwu and Z.M. Wang, Titanium Alloys and Their Machinability, J. Mater. Process. Technol., 1997, 68, p 262-274

    Google Scholar 

  3. D. Carou, E.M. Rubio, J. Herrera, C.H. Lauro, J.P. Davim, D. Carou, E.M. Rubio, J. Herrera, C.H. Lauro, and J.P. Davim, Latest Advances in the Micro-Milling of Titanium Alloys: A Review, Procedia Manuf., 2017, 13, p 275-282

    Google Scholar 

  4. N.W. Khun, A.W.Y. Tan, and E. Liu, Mechanical and Tribological Properties of Cold-Sprayed Ti Coatings on Ti-6Al-4V Substrates, J. Therm. Spray Technol., 2016, 25(4), p 715-724

    CAS  Google Scholar 

  5. W. Zhang, Z. Zhu, and C.Y. Cheng, A Literature Review of Titanium Metallurgical Processes, Hydrometallurgy, 2011, 108(3–4), p 177-188

    CAS  Google Scholar 

  6. Y. Zhang, D. Sun, X. Gu, and H. Li, Strength Improvement and Interface Characteristic of Direct Laser Welded Ti Alloy/Stainless Steel Joint, Mater. Lett., 2018, 231, p 31-34

    CAS  Google Scholar 

  7. J. Zhang, X. Li, D. Xu, and R. Yang, Recent Progress in the Simulation of Microstructure Evolution in Titanium Alloys, Prog. Nat. Sci. Mater. Int., 2019, 29(3), p 295-304

    CAS  Google Scholar 

  8. B.A. Obadele, A. Andrews, P.A. Olubambi, M.T. Mathew, and S. Pityana, Effect of ZrO2 addition on the Dry Sliding Wear Behavior of Laser Clad Ti6Al4 V Alloy, Wear, 2015, 328–329, p 295-300

    Google Scholar 

  9. F. Weng, C. Chen, and H. Yu, Research Status of Laser Cladding on Titanium and Its Alloys: A Review, Mater. Des., 2014, 58, p 412-425

    CAS  Google Scholar 

  10. Q. Gao, H. Yan, Y. Qin, P. Zhang, J. Guo, and Z. Chen, Laser Cladding Ti-Ni/TiN/TiW + TiS/WS2 Self-Lubricating Wear Resistant Composite Coating on Ti-6Al-4V Alloy, Opt. Laser Technol., 2019, 113(October 2018), p 182-191

    CAS  Google Scholar 

  11. L. Yang, T. Yu, M. Li, Y. Zhao, and J. Sun, Microstructure and Wear Resistance of In-Situ Synthesized Ti(C, N) Ceramic Reinforced Fe-Based Coating by Laser Cladding, Materials Research Express, 2019, 6, p 8

    CAS  Google Scholar 

  12. Z. Li, M. Wei, K. Xiao, Z. Bai, W. Xue, C. Dong, D. Wei, and X. Li, Microhardness and Wear Resistance of Al2O3-TiB2-TiC Ceramic Coatings on Carbon Steel Fabricated by Laser Cladding, Ceram. Int, 2018, 45(1), p 115-121

    Google Scholar 

  13. Z.D. Liu, X.C. Zhang, F.Z. Xuan, Z.D. Wang, and S.T. Tu, In Situ Synthesis of TiN/Ti3Al Intermetallic Matrix Composite Coatings on Ti6Al4V Alloy, Mater. Des., 2012, 37, p 268-273

    Google Scholar 

  14. H. Liu, X. Zhang, Y. Jiang, and R. Zhou, Microstructure and High Temperature Oxidation Resistance of In-Situ Synthesized TiN/Ti3Al Intermetallic Composite Coatings on Ti6Al4V Alloy by Laser Cladding Process, J. Alloys Compd., 2016, 670, p 268-274

    CAS  Google Scholar 

  15. Y. Feng, K. Feng, C. Yao, Z. Li, and J. Sun, Microstructure and Properties of In-Situ Synthesized (Ti3Al + TiB)/Ti Composites by Laser Cladding, Mater. Des., 2018, 157(800), p 258-272

    CAS  Google Scholar 

  16. J. Dai, N. Zhang, A. Wang, H. Zhang, and C. Chen, Microstructure and High Temperature Oxidation Behavior of Ti-Al-Nb-Si Coatings on Ti-6Al-4V Alloy, J. Alloys Compd., 2018, 765, p 46-57

    CAS  Google Scholar 

  17. Y. Pu, B. Guo, J. Zhou, S. Zhang, H. Zhou, and J. Chen, Microstructure and Tribological Properties of in Situ Synthesized TiC, TiN, and SiC Reinforced Ti3Al Intermetallic Matrix Composite Coatings on Pure Ti by Laser Cladding, Appl. Surf. Sci., 2008, 255, p 2697-2703

    CAS  Google Scholar 

  18. M.M. Quazi, M.A. Fazal, A.S.M.A. Haseeb, F. Yusof, H.H. Masjuki, and A. Arslan, Effect of Rare Earth Elements and Their Oxides on Tribo-Mechanical Performance of Laser Claddings: A Review, J. Rare Earths Chin Soc Rare Earths, 2016, 34(6), p 549-564

    CAS  Google Scholar 

  19. J. Li, X. Luo, and G.J. Li, Effect of Y2O3 on the Sliding Wear Resistance of TiB/TiC-Reinforced Composite Coatings Fabricated by Laser Cladding, Wear, 2014, 310(1–2), p 72-82

    CAS  Google Scholar 

  20. J. Li, H. Wang, M. Li, and Z. Yu, Effect of Yttrium on Microstructure and Mechanical Properties of Laser Clad Coatings Reinforced by in Situ Synthesized TiB and TiC, J. Rare Earths Chin. Soc. Rare Earths, 2011, 29(5), p 477-483

    CAS  Google Scholar 

  21. L. Yanan, S. Ronglu, N. Wei, Z. Tiangang, and L. Yiwen, Effects of CeO2 on Microstructure and Properties of TiC/Ti2Ni Reinforced Ti-Based Laser Cladding Composite Coatings, Opt. Lasers Eng., 2019, 120(March), p 84-94

    Google Scholar 

  22. Q. Li, Y. Lei, and H. Fu, Laser Cladding In-Situ NbC Particle Reinforced Fe-Based Composite Coatings with Rare Earth Oxide Addition, Surf. Coat. Technol., 2014, 239, p 102-107

    CAS  Google Scholar 

  23. X. He, R.G. Song, and D.J. Kong, Microstructures and Properties of Ni/TiC/La2O3 Reinforced Al Based Composite Coatings by Laser Cladding, Opt. Laser Technol., 2019, 117(April), p 18-27

    CAS  Google Scholar 

  24. S. Zhang, Q. Liu, L. Li, Y. Bai, and B. Yang, The Controllable Lanthanum Ion Release from Ca-P Coating Fabricated by Laser Cladding and Its Effect on Osteoclast Precursors, Mater. Sci. Eng. C, 2018, 93(July 2017), p 1027-1035

    CAS  Google Scholar 

  25. H.C. Li, D.G. Wang, C.Z. Chen, and F. Weng, Effect of CeO2 and Y2O3 on Microstructure, Bioactivity and Degradability of Laser Cladding CaO-SiO2 Coating on Titanium Alloy, Colloids Surf. B Biointerfaces, 2015, 127, p 15-21

    CAS  Google Scholar 

  26. C. Cui, X. Zhu, S. Liu, Q. Li, M. Zhang, G. Zhu, and S. Wei, Effect of Nano-Sized ZrO2 on High Temperature Performance of Mo-ZrO2 Alloy, J. Alloys Compd., 2018, 768, p 81-87

    CAS  Google Scholar 

  27. B.A. Wang, N. Wang, Y.J. Yang, H. Zhong, M.Z. Ma, X.Y. Zhang, and R.P. Liu, Microstructure and Mechanical Properties of ZrO2 Particle Dispersion Strengthened 16MnV Steel, Mater. Sci. Eng. A, 2017, 692(March), p 168-173

    CAS  Google Scholar 

  28. R.R. Behera, A. Hasan, M.R. Sankar, and L.M. Pandey, Laser Cladding with HA and Functionally Graded TiO2-HA Precursors on Ti-6Al-4V Alloy for Enhancing Bioactivity and Cyto-Compatibility, Surf. Coat. Technol., 2018, 352, p 420-436

    CAS  Google Scholar 

  29. Y. Cai, Y. Chen, S. Marwana, Z. Luo, F. Gao, and L. Li, Influence of Dilution Rate on the Microstructure and Properties of FeCrCoNi High-Entropy Alloy Coating, Mater. Des., 2018, 142(31), p 124-137

    CAS  Google Scholar 

  30. D. Huang, L. Huang, B. Wang, V. Ji, and T. Zhang, The Relationship between T-ZrO2 Stability and the Crystallization of a Zr-Based Bulk Metallic Glass during Oxidation, Intermetallics, 2012, 31, p 21-25

    Google Scholar 

  31. F. Weng, H. Yu, C. Chen, J. Liu, L. Zhao, and J. Dai, Microstructure and Property of Composite Coatings on Titanium Alloy Deposited by Laser Cladding with Co42 + TiN Mixed Powders, J. Alloys Compd., 2016, 686, p 74-81

    CAS  Google Scholar 

  32. B. Guo, J. Zhou, S. Zhang, H. Zhou, Y. Pu, and J. Chen, Phase Composition and Tribological Properties of Ti-Al Coatings Produced on Pure Ti by Laser Cladding, Appl. Surf. Sci., 2007, 253(24), p 9301-9310

    CAS  Google Scholar 

  33. Y. Diao and K. Zhang, Microstructure and Corrosion Resistance of TC2 Ti Alloy by Laser Cladding with Ti/TiC/TiB2 Powders, Appl. Surf. Sci., 2015, 352, p 163-168

    CAS  Google Scholar 

  34. M. Zhang, S. Ma, K. Xu, L. Bai, and P.K. Chu, Bio-Tribological Properties and Cytocompatibility of Ti-Si-N Coatings, Vacuum, 2015, 115, p 50-57

    CAS  Google Scholar 

  35. C.L. Yeh and G.S. Teng, Combustion Synthesis of TiN-TiB2 Composites in Ti/BN/N2 and Ti/BN/B Reaction Systems, J. Alloys Compd., 2006, 424(1–2), p 152-158

    CAS  Google Scholar 

  36. K. Kaviyarasu, L. Kotsedi, A. Simo, X. Fuku, G.T. Mola, J. Kennedy, and M. Maaza, Photocatalytic Activity of ZrO2 Doped Lead Dioxide Nanocomposites: Investigation of Structural and Optical Microscopy of RhB Organic Dye, Appl. Surf. Sci., 2016, 6, p 2-7

    Google Scholar 

  37. F. Niu, D. Wu, G. Ma, J. Wang, M. Guo, and B. Zhang, Nanosized Microstructure of Al2O3-ZrO2(Y2O3) Eutectics Fabricated by Laser Engineered Net Shaping, Scr. Mater., 2015, 95(1), p 39-41

    CAS  Google Scholar 

  38. J. Kiilakoski, J. Puranen, E. Heinonen, H. Koivuluoto, and P. Vuoristo, Characterization of Powder-Precursor HVOF-Sprayed Al2O3-YSZ/ZrO2 Coatings, J. Therm. Spray Technol., 2019, 28(1–2), p 98-107

    CAS  Google Scholar 

  39. A. Patra, S.K. Karak, and R. Saxena, Fabrication and Characterization of Nano-ZrO2 Dispersed W-Based Alloy by Mechanical Alloying and Conventional Sintering, Mater. Today Proc., 2017, 26, p 3891-3902

    Google Scholar 

  40. N. Makuch, M. Kulka, P. Dziarski, and D. Przestacki, Laser Surface Alloying of Commercially Pure Titanium with Boron and Carbon, Opt. Lasers Eng., 2014, 57, p 64-81

    Google Scholar 

  41. Z. Wang, X. Zhou, and G. Zhao, Microstructure and Formation Mechanism of In-Situ TiC-TiB2/Fe Composite Coating, Trans. Nonferrous Met. Soc. China (English Ed.), 2008, 18(4), p 831-835

    CAS  Google Scholar 

  42. F. Weng, H. Yu, C. Chen, and J. Dai, Microstructures and Wear Properties of Laser Cladding Co-Based Composite Coatings on Ti-6Al-4V, Mater. Des., 2015, 80, p 174-181

    CAS  Google Scholar 

  43. Y. Jiao, L.J. Huang, L. Geng, R. Zhang, S. Jiang, X.T. Li, and Y.N. Gao, Strengthening and Plasticity Improvement Mechanisms of Titanium Matrix Composites with Two-Scale Network Microstructure, Powder Technology, 2019, 356, p 980-989

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China under Grant Nos. 51471043 and the Aviation Industry Corporation Research Project (cxy2103DLLG34).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiping Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, X., Lu, J. & Zhang, W. Morphology, Microstructure and Improved Mechanical Properties of TiB2/TiB/TiN Reinforced Ti3Al Matrix Composite Coating with ZrO2 Addition. J Therm Spray Tech 29, 510–519 (2020). https://doi.org/10.1007/s11666-020-00986-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-00986-y

Keywords

Navigation