Skip to main content
Log in

Hot deformation behavior of a spray-deposited AZ31 magnesium alloy

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The flow stress behavior of an as-spray-deposited AZ31 magnesium alloy with fine grains was investigated by means of compression tests with a Gleeble 1500 thermal mechanical simulator at isothermal constant strain rates of 0.01, 0.1, 1.0, and 10 s−1; the testing temperatures ranged from 623 to 723 K. It is demonstrated that a linear equation can be fitted between the Zemer-Hollomon parameter Z and stress in a double-log scale. The effect of deformation parameters on the behavior of recrystallization was analyzed. Dynamic recrystallization (DRX) generally occurs at a higher temperature and at a lower strain rate. The constitutive equation of the spray-deposited AZ31 magnesium alloy is presented by calculating the deformation activation energy (199.8 kJ·mol−1). The as-spray-formed AZ31 alloy is easier for DRX nucleation at elevated temperatures due to the fine grain, which provides a large amount of nucleation sites and a high-diffusivity path for the atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aghion E., Bronfin B., Magnesium alloys development towards the 21st century, Mater. Sci. Forum, 2000, 350–351: 19.

    Article  Google Scholar 

  2. Mordike B.L. and Ebert T. Magnesium properties- applications-potential, Mater. Sci. Eng. A, 2001, 302: 37.

    Article  Google Scholar 

  3. Ono N., Nowak R., and Miura S., Effect of deformation temperature on Hall-Petch relationship registered for polycrystalline magnesium, Mater. Lett., 2003, 58: 39.

    Article  CAS  Google Scholar 

  4. Mabuchi M., Ameyama K., Iwasaki H., and Higashi K., Low temperature superplasticity of AZ91 magnesium alloy with non-equilibrium grain boundaries, Acta Mater., 1999, 47: 2047.

    Article  CAS  Google Scholar 

  5. Mohri T., Mabuchi M., Nakamura M., Asahina T., Iwasaki H., Aizawa T., and Higashi K., Microstructural evolution and superplasticity of rolled Mg-9Al-1Zn, Mater. Sci. Eng. A, 2000, 290: 139.

    Article  Google Scholar 

  6. Kim W.J., Chung S.W., Chung C.S., and Kum D., Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures, Acta Mater., 2001, 49: 3337.

    Article  CAS  Google Scholar 

  7. Li Y. and Jones H., Structure and mechanical properties of rapidly solidified magnesium based Mg-Al-Zn-RE alloys consolidated by extrusion, Mater. Sci. Technol., 1996, 12: 981.

    ADS  CAS  Google Scholar 

  8. Cai J., Ma G.C., Liu Z., H.F. Zhang, Z.Q. Hu, Influence of rapid solidification on the microstructure of AZ91HP alloy, J. Alloy. Compd., 2006, 422: 92.

    Article  CAS  Google Scholar 

  9. Ebert T., Moll F., and Kainer K.U., Spray forming of magnesium alloys and composites, Powder Metall., 1997, 40: 126.

    CAS  Google Scholar 

  10. Fatemi-Varzaneh S.M., Zarei-Hanzaki A., Beladi H.. Dynamic recrystallization in AZ31 magnesium alloy, Mater. Sci. Eng. A, 2007, 456: 52.

    Article  CAS  Google Scholar 

  11. Sitdikov O. and Kaibyshev R., Dynamic recrystallization in pure magnesium, Mater, Trans., 2001, 42(9): 1928.

    Article  CAS  Google Scholar 

  12. Barnett M R. Influence of deformation conditions and texture on the high temperature flow stress of magnesium AZ31, J. Light Met., 2001, 1: 167.

    Article  Google Scholar 

  13. Barnett M.R., Keshavarz Z., Beer A.G., Atwell D., Influence of grain size on hot working stresses and microstructures in Mg-3Al-1Zn, Scripta Mater., 2004, 51: 19.

    Article  CAS  Google Scholar 

  14. Karhausen K. and Kopper R., Model for integrated process and microstructure simulation in hot forming, Steel Res., 1992, 63(6): 247.

    CAS  Google Scholar 

  15. Wu X. and Liu Y., Superplasticity of coarse-grained magnesium alloy, Scripta Mater., 2002, 46: 269.

    Article  CAS  Google Scholar 

  16. Burachynsky V. and Cahoon J.R., A theory for solute impurity diffusion, which considers Engel-Brewer valences, balancing the Fermi energy levels of solvent and solute, and differences in zero point energy, Metall. Mater. Trans. A, 1997, 28A(3): 563.

    Article  ADS  Google Scholar 

  17. Tan J.C. and Tan M.J., Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet, Mater. Sci. Eng. A, 2003, 339: 124.

    Article  Google Scholar 

  18. Ion S.E., Humpherys F.J., and White S.H., Dynamic recrystallization and the development of microstructure during the high temperature deformation of magnesium, Acta Metall., 1982, 30: 1909.

    Article  CAS  Google Scholar 

  19. Mabuchi M. and Higashj K., Strengthening mechanisms of Mg-Si alloys, Acta Mater., 1996, 44(11): 4611.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongbing Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Chen, Y., Cui, H. et al. Hot deformation behavior of a spray-deposited AZ31 magnesium alloy. Rare Metals 28, 91–97 (2009). https://doi.org/10.1007/s12598-009-0018-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-009-0018-2

Keywords

Navigation