Skip to main content
Log in

Plasma wave aided heating of collisional nanocluster plasma by nonlinear interaction of two high power laser beams

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this theoretical investigation, plasma wave aided heating scheme is analytically studied in collisional nanocluster plasma by two high power Hermite cosh-Gaussian laser beams. Due to the interaction of laser beams with plasma embedded nanocluster, the cluster gets ionize and become into plasma plume ball. Nonlinear interaction of two laser beams causes the beat wave with frequency \(\omega = \omega_{1} - \omega_{2}\) and beat wave number \(k = k_{1} - k_{2}\) in plasma embedded with clusters. The oscillatory velocities due to each laser beam produce the nonlinear ponderomotive force. This nonlinear force might have much potential to excite the plasma wave and lead the electron heating. Analytic expressions of anomalous heating rate and evolution of electron temperature are derived. The heating rate is found maximum at laser normalized transverse propagation distance from y-axis \(y/w_{0} \sim 0.4\). It is observed that anomalous heating rate is resonantly increased by the presence of surface plasmon oscillations. This extreme condition of heating rate is achieved when laser beat wave frequency is comparatively near the frequency of surface charge oscillations of nanoclustered plasma and is typically \(\omega \sim \omega_{pe} /\sqrt 3\). The graphical discussion of this theory promises that heating rate can be effectively enhanced by varying the beam decentred parameter, beam width, mode index, rippled clustered density, clustered radius, and collisional frequency. It is also analysed that laser beam decentred parameter plays a sensitive role on nanocluster heating. By generalizing this laser heating theory, soft X-ray emission can be achieved via Bremsstrahlung process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available within this article.

Code availability

Not applicable.

References

  • Bahcivan, H.: Plasma wave heating during extreme electric fields in the high-latitude E region. Geophys. Res. Lett. 34, L15106 (2007)

    Article  ADS  Google Scholar 

  • Beaudry, G., Martineau, J.: Plasma heating by beating of two laser beams. Phys. Lett. A 43, 331–332 (1973)

    Article  ADS  Google Scholar 

  • Bhasin, L., Tripathi, D., Uma, R., Tripathi, V.K.: Laser beat wave terahertz generation in a clustered plasma in an azimuthal magnetic field. Phys. Plasmas 18, 053109 (2011)

    Article  ADS  Google Scholar 

  • Boffard, J.B., Lin, C.C., DeJoseph, C.A., Jr.: Application of excitation cross sections to optical plasma diagnostics. J. Phys. D: Appl. Phys. 37, R143–R161 (2004)

    Article  ADS  Google Scholar 

  • Cai, H., Yu, W., Zhu, S., Zheng, C., Cao, L., Pei, W.: Vacuum heating in the interaction of ultrashort, relativistically strong laser pulses with solid targets. Phys. Plasmas 13, 063108 (2006)

    Article  ADS  Google Scholar 

  • Chen, L., Hasegawa, A.: Plasma heating by spatial resonance of Alfvén wave. Phys. Fluids 17, 1399 (1974)

    Article  ADS  Google Scholar 

  • Clayton, C.E., Joshi, C., Darrow, C., Umstadter, D.: Relativistic plasma-wave excitation by collinear optical mixing. Phys. Rev. Lett. 54, 2343–2346 (1985)

    Article  ADS  Google Scholar 

  • Cohen, B.I., Mostrom, M.A., Nicholson, D.R., Kaufman, A.N., Max, C.E., Langdon, A.: Simulation of laser beat heating of a plasma. Phys. Fluids 18, 474 (1975)

    Article  ADS  Google Scholar 

  • Ditmire, T., Smith, R.A., Tisch, J.W.G., Hutchinson, M.H.R.: High Intensity Laser Absorption by Gases of Atomic Clusters. Phys. Rev. Lett. 78, 3121–3124 (1997)

    Article  ADS  Google Scholar 

  • Fennel, T., Meiwes-Broer, K.H., Tiggesbäumker, J., Reinhard, P.G., Dinh, P.M., Suraud, E.: Laser-driven nonlinear cluster dynamics. Rev. Mod. Phys. 82, 1793–1842 (2010)

    Article  ADS  Google Scholar 

  • Gupta, M.K., Sharma, R.P., Gupta, V.L.: Cross focusing of two laser beams and plasma wave excitation. Phys. Plasmas 12, 123101 (2005)

    Article  ADS  Google Scholar 

  • Hasegawa, A., Chen, L.: Kinetic process of plasma heating due to Alfven wave excitation. Phys. Rev. Lett. 35, 370–373 (1974)

    Article  ADS  Google Scholar 

  • Jeet, R., Kumar, A., Kumar, A., Babu, S., Varma, A.: Acceleration of electrons by a lower hybrid wave in a magnetic mirror. J. Korean Phys. Soc. 78, 1179–1184 (2021)

    Article  ADS  Google Scholar 

  • Kaganovich, I.D., Startsev, E.A., Davidson, R.C.: Nonlinear plasma waves excitation by intense ion beams in background plasma. Phys. Plasmas 11, 3546–3552 (2004)

    Article  ADS  Google Scholar 

  • Kitagawa, Y., Matsumoto, T., Minamihata, T., Sawai, K., Matsuo, K., Mima, K., Nishihara, K., Azechi, H., Tanaka, K.A., Takabe, H., Nakai, S.: Beat-wave excitation of plasma wave and observation of accelerated electrons. Phys. Rev. Lett. 68, 48–51 (1992)

    Article  ADS  Google Scholar 

  • Kumar, M., Singh, R., Verma, U.: Bremsstrahlung soft X-ray emission from clusters heated by a Gaussian laser beam. Laser Part. Beams 32, 9–14 (2014)

    Article  ADS  Google Scholar 

  • Kumar, A., Kumar, A., Varma, A.: Excitation of electron Bernstein waves by beating of two cosh-Gaussian laser beams in a collisional plasma. Laser Phys. 31, 106001 (2021)

    Article  ADS  Google Scholar 

  • Liu, C.S., Tripathi, V.K.: Fast and slow plasma waves excitation by counterpropagating lasers in a hot plasma. Phys. Plasmas 9, 3995–3998 (2002)

    Article  ADS  Google Scholar 

  • Patil, S.D., Takale, M.V., Fulari, V.J., Gupta, D.N., Suk, H.: Combined effect of ponderomotive and relativistic self-focusing on laser beam propagation in a plasma. Appl. Phys. B 111, 1–6 (2013)

    Article  ADS  Google Scholar 

  • Pushplata, Vijay, A.: Beat wave cyclotron heating of rippled density plasma, Laser Part. Beams 36, 465–469 (2018)

    Google Scholar 

  • Rosenbluth, M.N., Liu, C.S.: Excitation of Plasma Waves by Two Laser Beams. Phys. Rev. Lett. 29, 701–705 (1972)

    Article  ADS  Google Scholar 

  • Saalmann, U.: Cluster nanoplasmas in strong FLASH pulses: formation, excitation and relaxation. J. Phys. B At. Mol. Opt. Phys. 43, 194012 (2010)

    Article  ADS  Google Scholar 

  • Safari, S., Niknam, A.R., Jahangiri, F., Jazi, B.: Terahertz radiation generation through the nonlinear interaction of Hermite and Laguerre Gaussian laser beams with collisional plasma: Field profile optimization. J. Appl. Phys. 123, 153101 (2018)

    Article  ADS  Google Scholar 

  • Sharma, R.P., Sharma, P., Chauhan, P.K.: Effect of laser beam filamentation on plasma wave localization and electron heating. Phys. Plasmas 14, 103112 (2007)

    Article  ADS  Google Scholar 

  • Sherlock, M., Hill, E.G., Evans, R.G., Rose, S.J.: In-depth plasma-wave heating of dense plasma irradiated by short laser pulses. Phys. Plasmas 12, 056703 (2005)

    Google Scholar 

  • Shvets, G., Fisch, N.J.: Parametric excitations of fast plasma waves by counterpropagating laser beams. Phys. Rev. Lett. 86, 3328–3331 (2001)

    Article  ADS  Google Scholar 

  • Siahmazgi, R.N., Jafari, S.: Tunable terahertz radiation generation using the beating of two super-Gaussian laser beams in the collisional nanocluster plasma. J. Opt. Soc. Am. B 37, 3296–3302 (2020)

    Article  ADS  Google Scholar 

  • Siahmazgi, R.N., Jafari, S.: Soft X-ray emission from an anharmonic collisional nanoplasma by a laser–nanocluster interaction. J. Plasma Phys. 87, 905870312 (2021)

    Article  Google Scholar 

  • Taguchi, T., Antonsen, T.M., Jr., Milchberg, H.M.: Resonant heating of a cluster plasma by intense laser light. Phys. Rev. Lett. 92, 205003 (2004)

    Article  ADS  Google Scholar 

  • Tiwari, P.K., Tripathi, V.K.: Stimulated Raman scattering of a laser in a plasma with clusters. Phys. Plasmas 11, 1674–1679 (2004)

    Article  ADS  Google Scholar 

  • Tiwari, P.K., Tripathi, V.K.: Laser beat-wave excitation of plasma waves in a clustered gas. Phys. Scr. 73, 393–396 (2006)

    Article  ADS  Google Scholar 

  • Varma, A., Kumar, A.: Electron Bernstein wave excitation and heating by nonlinear interactions of Laguerre and Hermite Gaussian laser beams in a magnetized plasma. Optik 228, 166212 (2021a)

    Article  ADS  Google Scholar 

  • Varma, A., Kumar, A.: Electron Bernstein wave excitation by beating of two copropagating super-Gaussian laser beam in a collisional nanocluster plasma. Optik 240, 166872 (2021b)

    Article  ADS  Google Scholar 

  • Varma, A., Kumar, A.: Electron Bernstein wave aided beat wave of Hermite-cosh-Gaussian laser beam absorption in a collisional nanocluster plasma. Optik 245, 167702 (2021c)

    Article  ADS  Google Scholar 

  • Varma, A., Kumar, A.: Electron Bernstein wave aided heating of collisional nanocluster plasma by nonlinear interactions of two super-Gaussian laser beams. Laser Phys. 32, 016001 (2022)

    Article  ADS  Google Scholar 

  • Varma, A., Kumar, A., Kumar, A.: Nonlocal theory of excitation of electron Bernstein waves by a relativistic electron beam in plasma with loss-cone distribution of electron. Braz. J. Phys. 51, 661–666 (2021)

    Article  ADS  Google Scholar 

  • Vieira, J., Trines, R.M.G.M., Alves, E.P., Fonseca, R.A., Mendonc, J.T., Bingham, R., Norreys, P., Silva, L.O.: Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering. Nat. Commun. 7, 10371 (2016)

    Article  ADS  Google Scholar 

  • Vijay, A., Tripathi, V.K.: Laser beat frequency heating of a rippled density plasma. Phys. Plasmas 23, 093124 (2016)

    Article  ADS  Google Scholar 

  • White, R., Chen, L., Lin, Z.: Resonant plasma heating below the cyclotron frequency, Resonant plasma heating below the cyclotron frequency. Phys. Plasmas 9, 1890–1897 (2002)

    Article  ADS  Google Scholar 

  • Yadav, M., Kumar, A., Mandal, S.: Nonlinear laser absorption on metal surfaces embedded with metallic nanoparticles and nanotubes. Phys. Plasmas 27, 043302 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like grateful to Prof. V. K. Tripathi (IIT Delhi), Prof. M. S, Tiwari (Dr. H. S. Gour University, Sagar), and Prof. K. N. Uttam (Department of Physics, University of Allahabad, India) for valuable discussions and suggestion. We would like to thank Prof. P. N. Dongre (Principal) and Prof. A. K. Kushwaha (Head, Department of Physics) of K. N. Govt. P. G. College, Gyanpur-Bhadohi for providing the research facilities.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

AK and SPM have done the calculation part. MSY do the computational work. AV write the manuscript and AK supervised the whole problem.

Corresponding author

Correspondence to Asheel Kumar.

Ethics declarations

Conflicts of interest

The authors declare that they have not any conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kumar, A., Mishra, S.P. et al. Plasma wave aided heating of collisional nanocluster plasma by nonlinear interaction of two high power laser beams. Opt Quant Electron 54, 753 (2022). https://doi.org/10.1007/s11082-022-04206-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-022-04206-5

Keywords

Navigation