Skip to main content
Log in

In situ Analysis of Major Elements, Trace Elements and Sr Isotopic Compositions of Apatite from the Granite in the Chengchao Skarn-Type Fe Deposit, Edong Ore District: Implications for Petrogenesis and Mineralization

  • Petrology and Mineral Deposits
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Major elements, trace elements and Sr isotopic compositions of apatite from the granite in the Chengchao skarn-type Fe deposit of Edong ore district of Middle–Lower Yangtze River metallogenic belt were measured using EMPA (electron microprobe), LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometer) and LA-MC (multicollector)-ICP-MS methods in order to reveal the petrogenetic and metallogenic significance of the skarn-type iron deposits. The results show that the apatite in Chengchao granite is fluorapatite, which displays slight variation in major elements. The REE distribution pattern of the apatite is similar to that of the whole rocks, with strong negative Eu anomaly and low Sr/Y ratio. The concentration of Mn in apatite is low (140 ppm–591 ppm) and the Sr isotopic composition shows a limited variation from 0.706 9 to 0.708 2. The high oxygen fugacity of the Chengchao granite, implied by the low Mn content in apatite, is possibly attributed to contamination of the gypsum from sedimentary rock strata, which has long been thought to be an important factor that controls the Fe mineralization in the Middle–Lower Yangtze River metallogenic belt. This study also proves that the Eu/Eu* value and Sr/Y ratio in apatite can be effectively used to identify the adakitic affinity. The in situ Sr isotope analysis of apatite is in consistent with the bulk rock analysis, which indicates that the apatite Sr isotope can represent the initial Sr isotopic compositions of the magma. The Sr isotope and negative Eu anomaly in apatite imply that the Chengchao granite is likely sourced from crust-mantle mixed materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Boudreau, A. E., Kruger, F. J., 1990. Variation in the Composition of Apatite through the Merensky Cyclic Unit in the Western Bushveld Complex. Economic Geology, 85(4): 737–745. https://doi.org/10.2113/gsecongeo.85.4.737

    Article  Google Scholar 

  • Boudreau, A. E., McCallum, I. S., 1989. Investigations of the Stillwater Complex: Part V. Apatites as Indicators of Evolving Fluid Composition. Contributions to Mineralogy and Petrology, 102(2): 138–153. https://doi.org/10.1007/bf00375336

    Article  Google Scholar 

  • Boyce, J. W., Hervig, R. L., 2008. Apatite as a Monitor of Late-Stage Magmatic Processes at Volcán Irazú, Costa Rica. Contributions to Mineralogy and Petrology, 157(2): 135–145. https://doi.org/10.1007/s00410-008-0325-x

    Article  Google Scholar 

  • Boynton, W. V., 1984. Cosmochemistry of the Rare Earth Elements: Meteoric Studies. Rare Earth Element Geochemistry, 2(2): 63–114

    Article  Google Scholar 

  • Cai, B. J., 1980. The Relationship of Gypsum Beds with Endogenic Copper and Iron Ores in the Middle–Lower Yangtze Valley. Geocheimica, (2): 193–199 (in Chinese with English Abstract)

    Google Scholar 

  • Casillas, R., Nagy, G., Pantos, G., et al., 1995. Occurrence of Th, U, Y, Zr, and REE-Bearing Accessory Minerals in Late-Variscan Granitic Rocks from the Sierra de Guadarrama (Spain). European Journal of Mineralogy, 7(4): 989–1006. https://doi.org/10.1127/ejm/7/4/0989

    Article  Google Scholar 

  • Chang, Y. F., Liu, X. P., Wu, Y. C., 1991. The Copper-Iron Belt of the Lower and Middle Reaches of the Changjiang River. Geological Publishing House, Beijing (in Chinese with English Abstract)

    Google Scholar 

  • Chen, W., Simonetti, A., 2014. Evidence for the Multi-Stage Petrogenetic History of the Oka Carbonatite Complex (Québec, Canada) as Recorded by Perovskite and Apatite. Minerals, 4(2): 437–476. https://doi.org/10.3390/min4020437

    Article  Google Scholar 

  • Chen, W., Simonetti, A., Burns, P. C., 2013. A Combined Geochemical and Geochronological Investigation of Niocalite from the Oka Carbonatite Complex, Canada. The Canadian Mineralogist, 51(5): 785–800. https://doi.org/10.3749/canmin.51.5.785

    Article  Google Scholar 

  • Creaser, R. A., Gray, C. M., 1992. Preserved Initial 87Sr/86Sr in Apatite from Altered Felsic Igneous Rocks: A Case Study from the Middle Proterozoic of South Australia. Geochimica et Cosmochimica Acta, 56(7): 2789–2795. https://doi.org/10.1016/0016-7037(92)90359-q

    Article  Google Scholar 

  • Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294): 662–665. https://doi.org/10.1038/347662a0

    Article  Google Scholar 

  • Defant, M. J., Xu, J. F., Kepezhinskas, P., et al., 2002. Adakites: Some Variations on a Theme. Acta Petrologica Sinica, 18(2): 129–142

    Google Scholar 

  • Duan, D. F., Jiang, S. Y., 2017. In situ Major and Trace Element Analysis of Amphiboles in Quartz Monzodiorite Porphyry from the Tonglvshan Cu-Fe (Au) Deposit, Hubei Province, China: Insights into Magma Evolution and Related Mineralization. Contributions to Mineralogy and Petrology, 172(5): 36. https://doi.org/10.1007/s00410-017-1355-z

    Article  Google Scholar 

  • Fan, H. Y., Li, W. D., Wang, W. B., 1995. On the Relationship between the Marine Deposits in the Middle–Lower Yangtze Area. Volcanology & Mineral Resources, (2): 32–41 (in Chinese with English Abstract)

    Google Scholar 

  • Harrison, T. M., Watson, E. B., 1984. The Behavior of Apatite during Crustal Anatexis: Equilibrium and Kinetic Considerations. Geochimica et Cosmochimica Acta, 48(7): 1467–1477. https://doi.org/10.1016/0016-7037(84)90403-4

    Article  Google Scholar 

  • Hofmann, A. W., 2014. 3.3—Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements. Treatise on Geochemistry, 2: 67–101. https://doi:10.1016/B978-0-08-095975-7.00203-5

    Article  Google Scholar 

  • Hughes, J. M., Rakovan, J. F., 2015. Structurally Robust, Chemically Diverse: Apatite and Apatite Supergroup Minerals. Elements, 11(3): 165–170. https://doi.org/10.2113/gselements.11.3.165

    Article  Google Scholar 

  • Jahn, B. M., Wu, F. Y., Lo, C. H., et al., 1999. Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 157(1/2): 119–146. https://doi.org/10.1016/s0009-2541(98)00197-1

    Article  Google Scholar 

  • Li, J. W., Zhao, X. F., Zhou, M. F., et al., 2009. Late Mesozoic Magmatism from the Daye Region, Eastern China: U-Pb Ages, Petrogenesis, and Geodynamic Implications. Contributions to Mineralogy and Petrology, 157(3): 383–409. https://doi.org/10.1007/s00410-008-0341-x

    Article  Google Scholar 

  • Li, W., Xie, G. Q., Yao, L., et al., 2014. Genesis of the Intrusive Rocks in the Chengchao Large Skarn Iron Deposit, Southeastern Hubei Province. Journal of Jilin University (Earth Science Edition), (6): 1827–1855 (in Chinese with English Abstract)

    Google Scholar 

  • Li, Y. H., Duan, C., Han, D., et al., 2014. Effect of Sulfate Evaporate Layer for Formation of Porphyry Type Iron Ore Deposits in the Middle–Lower Yangtze River Area. Acta Petrologica Sinica, 30(5): 1355–1368 (in Chinese with English Abstract)

    Google Scholar 

  • Li, Y. H., Xie, G. Q., Duan, C., et al., 2013. Effect of Sulfate Evaporate Layer over the Formation of Skarn-Type Iron Ore Deposits. Acta Geologica Sinica, 87(9): 1324–1334 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, X. N., Kong, F. H., Yang, P., et al., 2009. Distribution and Basic Characteristics of Small Intrusions in Southeast Hubei. Resources Environment & Engineering, 23(4): 390–395 (in Chinese with English Abstract)

    Google Scholar 

  • Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010a. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1/2): 537–571. https://doi.org/10.1093/petrology/egp082

    Article  Google Scholar 

  • Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010b. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535–1546. https://doi.org/10.1007/s11434-010-3052-4

    Article  Google Scholar 

  • London, D., 1999. Experimental Silicate-Phosphate Equilibria in Peraluminous Granitic Magmas, with a Case Study of the Alburquerque Batholith at Tres Arroyos, Badajoz, Spain. Journal of Petrology, 40(1): 215–240. https://doi.org/10.1093/petrology/40.1.215

    Article  Google Scholar 

  • Miles, A. J., Graham, C. M., Hawkesworth, C. J., et al., 2014. Apatite: A New Redox Proxy for Silicic Magmas?. Geochimica et Cosmochimica Acta, 132: 101–119. https://doi.org/10.1016/j.gca.2014.01.040

    Article  Google Scholar 

  • Miller, C. F., McDowell, S. M., Mapes, R. W., 2003. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 31(6): 529. https://doi.org/10.1130/0091-7613(2003)031<0529:hacgio>2.0.co;2

    Article  Google Scholar 

  • Pan, L. C., Hu, R. Z., Wang, X. S., et al., 2016. Apatite Trace Element and Halogen Compositions as Petrogenetic-Metallogenic Indicators: Examples from Four Granite Plutons in the Sanjiang Region, SW China. Lithos, 254/255: 118–130. https://doi.org/10.13039/501100005231

    Article  Google Scholar 

  • Pan, Y. M., Dong, P., 1999. The Lower Changjiang (Yangzi/Yangtze River) Metallogenic Belt, East Central China: Intrusion-and Wall Rock-Hosted Cu-Fe-Au, Mo, Zn, Pb, Ag Deposits. Ore Geology Reviews, 15(4): 177–242. https://doi.org/10.1016/s0169-1368(99)00022-0

    Article  Google Scholar 

  • Pan, Y., Fleet, M. E., 2002. Compositions of the Apatite-Group Minerals: Substitution Mechanisms and Controlling Factors. Reviews in Mineralogy and Geochemistry, 48(1): 13–49. https://doi.org/10.2138/rmg.2002.48.2

    Article  Google Scholar 

  • Paton, C., Woodhead, J. D., Hergt, J. M., et al., 2010. Strontium Isotope Analysis of Kimberlitic Groundmass Perovskite via LA-MC-ICP-MS. Geostandards & Geoanalytical Research, 31(4): 321–330. https://doi.org10.1111/j.1751-908X.2007.00131.x

    Google Scholar 

  • Piccoli, P. M., Candela, P. A., 2002. Apatite in Igneous Systems. Reviews in Mineralogy and Geochemistry, 48(1): 255–292. https://doi.org/10.2138/rmg.2002.48.6

    Article  Google Scholar 

  • Pichavant, M., Montel, J. M., Richard, L. R., 1992. Apatite Solubility in Peraluminous Liquids: Experimental Data and an Extension of the Harrison-Watson Model. Geochimica et Cosmochimica Acta, 56(10): 3855–3861. https://doi.org/10.1016/0016-7037(92)90178-l

    Article  Google Scholar 

  • Prowatke, S., Klemme, S., 2006. Trace Element Partitioning between Apatite and Silicate Melts. Geochimica et Cosmochimica Acta, 70(17): 4513–4527. https://doi.org/10.1016/j.gca.2006.06.162

    Article  Google Scholar 

  • Ramos, F. C., Wolff, J. A., Tollstrup, D. L., 2004. Measuring 87Sr/86Sr Variations in Minerals and Groundmass from Basalts Using LA-MC-ICPMS. Chemical Geology, 211(1/2): 135–158. https://doi.org/10.1016/j.chemgeo.2004.06.025

    Article  Google Scholar 

  • Roeder, P. L., Macarthur, D., Ma, X. P., et al., 1987. Cathodoluminescence and Microprobe Study of Rare-Earth Elements in Apatite. American Mineralogist, 72(7): 801–811

    Google Scholar 

  • Ronsno, J. G., 1989. Coupled Substitutions Involving REEs and Na and Si in Apatites in Alkaline Rocks from the Ilimaussaq Intrusion, South Greenland, and the Petrological Implications. American Mineralogist, 74(7): 896–901

    Google Scholar 

  • Schisa, P., Boudreau, A., Djon, L., et al., 2015. The Lac des Iles Palladium Deposit, Ontario, Canada. Part II. Halogen Variations in Apatite. Mineralium Deposita, 50(3): 339–355. https://doi.org/10.1007/s00126-014-0541-4

    Article  Google Scholar 

  • Sha, L. K., Chappell, B. W., 1999. Apatite Chemical Composition, Determined by Electron Microprobe and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry, as a Probe into Granite Petrogenesis. Geochimica et Cosmochimica Acta, 63(22): 3861–3881. https://doi.org/10.1016/s0016-7037(99)00210-0

    Article  Google Scholar 

  • Shu, Q. A., Chen, P. L., Cheng, J. R., 1992. Geology of Iron-Copper Deposits in Eastern Hubei Province. Metallurgical Industry Publication House, Beijing (in Chinese with English Abstract)

    Google Scholar 

  • Tan, Q. M., 1991. Characteristics of Mineral Inclusions within Magmatites from Southeastern Hubei Area and Its Geological Significance. Resources Environment & Engineering, 5(1): 36–47 (in Chinese with English Abstract)

    Google Scholar 

  • Tang, M., Wang, X. L., Xu, X. S., et al., 2012. Neoproterozoic Subducted Materials in the Generation of Mesozoic Luzong Volcanic Rocks: Evidence from Apatite Geochemistry and Hf-Nd Isotopic Decoupling. Gondwana Research, 21(1): 266–280. https://doi.org/10.1016/j.gr.2011.05.009

    Article  Google Scholar 

  • Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Tsuboi, M., 2005. The Use of Apatite as a Record of Initial 87Sr/86Sr Ratios and Indicator of Magma Processes in the Inagawa Pluton, Ryoke Belt, Japan. Chemical Geology, 221(3/4): 157–169. https://doi.org/10.1016/j.chemgeo.2005.05.001

    Article  Google Scholar 

  • Watson, E. B., 1979. Apatite Saturation in Basic to Intermediate Magmas. Geophysical Research Letters, 6(12): 937–940. https://doi.org/10.1029/gl006i012p00937

    Article  Google Scholar 

  • Watson, E. B., 1980. Apatite and Phosphorus in Mantle Source Regions: An Experimental Study of Apatite/Melt Equilibria at Pressures to 25Kbar. Earth and Planetary Science Letters, 51(2): 322–335. https://doi.org/10.1016/0012-821x(80)90214-9

    Article  Google Scholar 

  • Watson, E. B., Green, T. H., 1981. Apatite/liquid Partition Coefficients for the Rare Earth Elements and Strontium. Earth and Planetary Science Letters, 56: 405–421. https://doi.org/10.1016/0012-821x(81)90144-8

    Article  Google Scholar 

  • Webster, J. D., Piccoli, P. M., 2015. Magmatic Apatite: A Powerful, yet Deceptive, Mineral. Elements, 11(3): 177–182. https://doi.org/10.2113/gselements.11.3.177

    Article  Google Scholar 

  • Xie, G. Q., Mao, J. W., Li, R. L., et al., 2008. Geochemistry and Nd-Sr Isotopic Studies of Late Mesozoic Granitoids in the Southeastern Hubei Province, Middle–Lower Yangtze River Belt, Eastern China: Petrogenesis and Tectonic Setting. Lithos, 104(1/2/3/4): 216–230. https://doi.org/10.1016/j.lithos.2007.12.008

    Article  Google Scholar 

  • Xie, G. Q., Mao, J. W., Zhao, H. J., et al., 2012. Zircon U-Pb and Phlogopite 40Ar-39Ar Age of the Chengchao and Jinshandian Skarn Fe Deposits, Southeast Hubei Province, Middle–Lower Yangtze River Valley Metallogenic Belt, China. Mineralium Deposita, 47(6): 633–652. https://doi.org/10.1007/s00126-011-0367-2

    Article  Google Scholar 

  • Xie, G. Q., Zhu, Q. Q., Yao, L., et al., 2013. Discussion on Regional Metal Mineral Deposit Model of Late Mesozoic Cu-Fe-Au Polymetallic Deposits in the Southeast Hubei Province. Bulletin of Mineralogy, Petrology and Geochemisty, 32(4): 418–426 (in Chinese with English Abstract)

    Google Scholar 

  • Yan, J., Chen, J. F., Xu, X. S., 2008. Geochemistry of Cretaceous Mafic Rocks from the Lower Yangtze Region, Eastern China: Characteristics and Evolution of the Lithospheric Mantle. Journal of Asian Earth Sciences, 33(3/4): 177–193. https://doi.org/10.1016/j.jseaes.2007.11.002

    Article  Google Scholar 

  • Yue, Y. Z., 1983. Characteristics of the Apatites of the Volcanic Complex in Lujiang-Zhongyang. Journal of Mineralogy and Petrology, (4): 12–16 (in Chinese with English Abstract)

    Google Scholar 

  • Zeng, L. P., Zhao, X. F., Li, X. C., et al., 2016. In situ Elemental and Isotopic Analysis of Fluorapatite from the Taocun Magnetite-Apatite Deposit, Eastern China: Constraints on Fluid Metasomatism. American Mineralogist, 101(11): 2468–2483. https://doi.org/10.2138/am-2016-5743

    Article  Google Scholar 

  • Zhai, Y. S., Yao, S. Z., Lin, X. D., et al., 1992. Regularities of Metallogenesis for Copper (Gold) Deposits in the Middle and Lower Reaches of the Yangtze River Area. Geological Publishing House, Beijing. 1–120 (in Chinese)

    Google Scholar 

  • Zhao, H. J., Mao, J. W., Xiang, J. F., et al., 2010. Mineralogy and Sr-Nd-Pb Isotopic Compositions of Quartz Diorite in Tonglushan Deposit, Hubei Province. Acta Petrologica Sinica, 26(3): 768–784 (in Chinese with English Abstract)

    Google Scholar 

  • Zhao, Z. H., 2010. Trace Element Geochemistry of Accesory Minerals and Its Applications in Petrogenesis and Metallogenesis. Earth Science Frontiers, 17(1): 267–286 (in Chinese with English Abstract)

    Google Scholar 

Download references

Acknowledgments

The field sampling was supported and assisted by Drs. Shanggang Jin and Ketao Wei from the First Geological Team in southeastern Hubei Province. Undergraduate students of China University of Geosciences (Wuhan), including Cheng Bai, Ziqi Chen and Mingyu Cao helped during the field work. Sample analysis was performed in the State Key Laboratory of Geological Processes and Mineral Resources and the Shandong Geological Testing Center. Prof. Kuidong Zhao and Dr. Yaoming Xu provided helps for data processing and interpretation. Two anonymous reviewers provided valuable comments and suggestions to improve this manuscript significantly. This study was supported by the National Key R & D Program of China (No. 2016YFC0600206) and the China Geological Survey (No. 12120114051801). The final publication is available at Springer via https://doi.org/10.1007/s12583-018-0837-x.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoyong Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Duan, D., Jiang, S. et al. In situ Analysis of Major Elements, Trace Elements and Sr Isotopic Compositions of Apatite from the Granite in the Chengchao Skarn-Type Fe Deposit, Edong Ore District: Implications for Petrogenesis and Mineralization. J. Earth Sci. 29, 295–306 (2018). https://doi.org/10.1007/s12583-018-0837-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-018-0837-x

Key words

Navigation