Skip to main content

Advertisement

Log in

In situ major and trace element analysis of amphiboles in quartz monzodiorite porphyry from the Tonglvshan Cu–Fe (Au) deposit, Hubei Province, China: insights into magma evolution and related mineralization

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Tonglvshan deposit is the largest Cu–Fe (Au) skarn deposit in the Edong district, which is located in the westernmost part of the Middle and Lower Yangtze River metallogenic belt, China. In this study, we performed a detailed in situ analysis of major and trace elements in amphiboles from the ore-related Tonglvshan quartz monzodiorite porphyry using electron microprobe (EMPA) analysis and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Two distinct populations of amphiboles, which can be distinguished by their aluminum content, are found in the quartz monzodiorite porphyry. The low-aluminum (Low-Al) amphiboles are subhedral or anhedral and formed at 46.3–73.5 MPa and 713–763 °C. In contrast, the high-aluminum (High-Al) amphiboles are euhedral and formed at 88–165 MPa and 778–854 °C. Some euhedral amphiboles are partially or completely replaced by Low-Al amphibole. The compositions of parental melts in equilibrium with the High-Al amphibole (Melt 1) and Low-Al amphibole (Melt 2) were computed by applying solid/liquid partition coefficients. This modeling shows that magma in equilibrium with High-Al amphibole (Melt 1) underwent 40% fractional crystallization of amphibole, plagioclase and apatite at a depth of ~5 km to evolve to magma in equilibrium with Low-Al amphibole (Melt 2). Copper enrichment occurred in the magma after undergoing fractional crystallization. The magma had a high oxygen fugacity, increasing from NNO + 1 (Melt 1) through NNO + 2 to HM (Melt 2), which could have prevented the loss of Cu (and possibly Au) to sulfide minerals during crystallization. Finally, the evolved magma intruded to shallower depths, where it presumably exsolved aqueous ore-forming fluids. Therefore, the large Cu–Fe–Au reserves of the Tonglvshan deposit can likely be attributed to a combination of controlling factors, including high oxygen fugacity, fractional crystallization, fluid exsolution, and a shallow emplacement depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from Xie et al. (2011)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Biotite data from the Edong district are cited from Liu et al. (2010a), Zhao et al. (2010) and Zhou (1986)

Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Bachmann O, Dungan MA (2002) Temperature-induced Al-zoning in hornblendes of the Fish Canyon magma, Colorado. Am Mineral 87:1062–1076. doi:10.2138/am-2002-8-903

    Article  Google Scholar 

  • Bacon CR, Druitt TH (1988) Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contrib Mineral Petrol 98:224–256. doi:10.1007/Bf00402114

    Article  Google Scholar 

  • Ballard JR, Palin MJ, Campbell IH (2002) Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile. Contrib Mineral Petrol 144:347–364. doi:10.1007/s00410-002-0402-5

    Article  Google Scholar 

  • Baxter S, Feely M (2002) Magma mixing and mingling textures in granitoids: examples from the Galway Granite, Connemara, Ireland. Mineral Petrol 76:63–74. doi:10.1007/s007100200032

    Article  Google Scholar 

  • Bea F, Pereira MD, Stroh A (1994) Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chem Geol 117:291–312. doi:10.1016/0009-2541(94)90133-3

    Article  Google Scholar 

  • Boynton WV (1984) Chapter 3—Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Developments in geochemistry, vol 2. Elsevier, pp 63–114. doi:10.1016/B978-0-444-42148-7.50008-3

  • Carroll MR, Rutherford MJ (1985) Sulfide and sulfate saturation in hydrous silicate melts. J Geophys Res 90:C601–C612. doi:10.1029/JB090iS02p0C601

    Article  Google Scholar 

  • Chang YF, Liu XP, Wu YC (1991) The copper–iron belt of the lower and middle reaches of the Changjiang River. Geological Publishing House, Beijing (in Chinese with English abstract)

    Google Scholar 

  • Cline JS (1995) Genesis of porphyry copper deposits: The behavior of water, chloride, and copper in crystallizing melts. Ariz Geol Soc Dig 20:69–82

    Google Scholar 

  • Dawson JB, Hinton RW (2003) Trace-element content and partitioning in calcite, dolomite and apatite in carbonatite, Phalaborwa, South Africa. Mineral Mag 67(5):921–930. doi:10.1180/0026461036750151

    Article  Google Scholar 

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665. doi:10.1038/347662a0

    Article  Google Scholar 

  • Defant MJ, Xu JF, Kepezhinskas P, Wang Q, Zhang Q, Xiao L (2002) Adakites: some variations on a theme. Acta Petrol Sin 18:129–142

    Google Scholar 

  • Fujimaki H (1986) Partition coefficients of Hf, Zr, and REE between zircon, apatite, and liquid. Contrib Mineral Petrol 94:42–45. doi:10.1007/bf00371224

    Article  Google Scholar 

  • Hsu YJ, Zajacz Z, Ulmer P, Heinrich CA (2014) Copper partitioning between amphibole and silicate melts: the effects of temperature, melt compositions, oxygen fugacity and water concentrations. AFU Fall Meeting Abstr 1:4846

    Google Scholar 

  • Hubei Bureau of Geology, Mineral Resoures (1990) Regional geology of Hubei Province. Geological Publishing House, Beijing (in Chinese with English abstract)

    Google Scholar 

  • Leake BE et al (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association Commission on new minerals and mineral names. Mineral Mag 61:295–321. doi:10.1180/minmag.1997.061.405.13

    Article  Google Scholar 

  • Li JW, Zhao XF, Zhou MF, Ma CQ, Souza ZSD, Vasconcelos P (2009) Late Mesozoic magmatism from the Daye region, eastern China: U-Pb ages, petrogenesis, and geodynamic implications. Contrib Mineral Petrol 157:383–409. doi:10.1007/s00410-008-0341-x

    Article  Google Scholar 

  • Li JW, Vasconcelos PM, Zhou MF, Deng XD, Cohen B, Bi SJ, Zhao XF, Selby D (2014) Longevity of magmatic–hydrothermal systems in the Daye Cu–Fe–Au district, eastern China with implications for mineral exploration. Ore Geol Rev 57:375–392. doi:10.1016/j.oregeorev.2013.08.002

    Article  Google Scholar 

  • Lin WW, Peng LJ (1994) The estimation of Fe3+ and Fe2+ contents in amphibole and biotite from EMPA data. J Changchun Univ Earth Sci 24:155–162 (In Chinese with English abstract)

    Google Scholar 

  • Liu B, Ma CQ, Liu YY, Xiong FH (2010a) Mineral chemistry of boitites from the Tongshankou Cu–Mo deposit: implications for the petrogenesis and mineralization. Acta Petrol Mineral 29:51–165 (In Chinese with English abstract)

    Google Scholar 

  • Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB (2010b) Continental and oceanic crust recycling-induced melt–peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J Petrol 51:537–571. doi:10.1093/petrology/egp082

    Article  Google Scholar 

  • Liu YS, Hu ZC, Zong KQ, Gao CG, Gao S, Xu J, Chen HH (2010c) Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin Sci Bull 55:1535–1546. doi:10.1007/s11434-010-3052-4

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253. doi:10.1016/0009-2541(94)00140-4

    Article  Google Scholar 

  • Mungall JE (2002) Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits. Geology 30:915–918. doi:10.1130/0091-7613(2002)030<0915:RTMSMA>2.0.CO;2

    Article  Google Scholar 

  • Mustard R, Ulrich T, Kamenetsky VS, Mernagh T (2006) Gold and metal enrichment in natural granitic melts during fractional crystallization. Geology 34:85–88. doi:10.1130/G22141.1

    Article  Google Scholar 

  • Oyarzun R, Márquez A, Lillo J, López I, Rivera S (2001) Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: adakitic versus normal calc-alkaline magmatism. Miner Deposita 36:794–798. doi:10.1007/s001260100205

    Article  Google Scholar 

  • Reed MJ, Candela PA, Piccoli PM (2000) The distribution of rare earth elements between monzogranitic melt and the aqueous volatile phase in experimental investigations at 800 & #xB0;C and 200 MPa. Contrib Mineral Petrol 140:251–262. doi:10.1007/s004100000182

    Article  Google Scholar 

  • Richards JP (2003) Tectono-magmatic precursors for porphyry Cu–(Mo–Au) deposit formation. Econ Geol 98:1515–1533. doi:10.2113/gsecongeo.98.8.1515

    Article  Google Scholar 

  • Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Mineral Petrol 160:45–66. doi:10.1007/s00410-009-0465-7

    Article  Google Scholar 

  • Robb LJ (2005) Introduction to Ore-forming Processes. Blackwell Publishing, Malden

    Google Scholar 

  • Ronov AB, Yaroshensky AA (1976) A new model for the chemical structure of the Earth crust. Geochem International 13:89–121

    Google Scholar 

  • Rowe MC, Kent AJR, Thornber CR (2008) Using amphibole phenocrysts to track vapor transfer during magma crystallization and transport: an example from Mount St. Helens, Washington. J Volcanol Geotherm Res 178:593–607. doi:10.1016/j.jvolgeores.2008.01.012

    Article  Google Scholar 

  • Sajona FG, Maury RC (1998) Association of adakites with gold and copper mineralization in the Philippines. Comptes Rendus de l’Académie des Sciences—Series IIA—Earth Planet Sci 326:27–34. doi:10.1016/S1251-8050(97)83200-4

    Google Scholar 

  • Shu QA, Chen PL, Cheng JR (1992) Geology of iron–copper deposits in eastern Hubei Province. Press of Metallurgical Industry, Beijing (in Chinese with English abstract)

    Google Scholar 

  • Smith DJ (2014) Clinopyroxene precursors to amphibole sponge in arc crust. Nat Commun 5:4329. doi:10.1038/ncomms5329

    Google Scholar 

  • Tiepolo M, Tribuzio R (2008) Petrology and U-Pb zircon geochronology of amphibole-rich cumulates with Sanukitic affinity from Husky Ridge (Northern Victoria Land, Antarctica): insights into the role of amphibole in the petrogenesis of subduction-related magmas. J Petrol 49:937–970. doi:10.1093/petrology/egn012

    Article  Google Scholar 

  • Tiepolo M, Oberti R, Zanetti A, Vannucci R, Foley SF (2007) Trace-element partitioning between amphibole and silicate melt. Rev Mineral Geochem 67:417–451. doi:10.2138/rmg.2007.67.11

    Article  Google Scholar 

  • Tiepolo M, Tribuzio R, Langone A (2011) High-Mg andesite petrogenesis by amphibole crystallization and ultramafic crust assimilation: evidence from Adamello hornblendites (Central Alps, Italy). J Petrol 52:1011–1045. doi:10.1093/petrology/egr016

    Article  Google Scholar 

  • Wang R, Richards JP, Hou ZQ, Yang ZM, DuFrane SA (2014) Increased magmatic water content—the key to Oligo-Miocene porphyry Cu-Mo ± Au formation in the Eastern Gangdese Belt. Tibet. Econ Geol 109:1315–1339. doi:10.2113/econgeo.109.5.1315

    Article  Google Scholar 

  • Webster JD, Holloway JR, Hervig RL (1989) Partitioning of lithophile trace elements between H2O and H2O + CO2 fluids and topaz rhyolite melt. Econ Geol 84:116–134. doi:10.2113/gsecongeo.84.1.116

    Article  Google Scholar 

  • Wones DR, Eugster HP (1965) Stability of biotite-experiment theory and application. Am Mineral 50:1228–1272

    Google Scholar 

  • Xie GQ, Mao JW, Li XW, Duan C, Yao L (2011) Late Mesozoic bimodal volcanic rocks in the Jinniu basin, Middle-Lower Yangtze River Belt (YRB), East China: age, petrogenesis and tectonic implications. Lithos 127:144–164. doi:10.1016/j.lithos.2011.08.012

    Article  Google Scholar 

  • Xu YM, Jiang SY, Zhu ZY, Zhou W, Kong FB, Sun MZ, Xiong YG (2013) Geochronology, geochemistry and mineralogy of ore-bearing and ore-barren intermediate-acid intrusive rocks from the Jiurui ore district, Jiangxi Province and their geological implications. Acta Petrol Sin 29:4291–4310 (In Chinese with English abstract)

    Google Scholar 

  • Zhao HJ, Mao JW, Xiang JF, Zhou ZH, Wei KT, Ke YF (2010) Mineralogy and Sr–Nd–Pb isotopic compositions of quartz diorite in Tonglushan deposit, Hubei Province. Acta Petrol Sin 26:768–784 (in Chinese with English abstract)

    Google Scholar 

  • Zhao HJ, Xie GQ, Wei KT, Ke YF (2012) Mineral compositions and fluid evolution of the Tonglushan skarn Cu–Fe deposit, SE Hubei, east-central China. Int Geol Rev 54:737–764. doi:10.1080/00206814.2011.569418

    Article  Google Scholar 

  • Zhou ZX (1986) The origin of intrusive mass in Fengshandong, Hubei Province. Acta Petrol Sin 2:59–70 (In Chinese with English abstract)

    Google Scholar 

Download references

Acknowledgements

We wish to thank Dr. Yang Shuiyuan for his help with EPMA analyses, and Drs. Chen Wei and Zhao Kuidong for their help with LA-ICP-MS analyses. This work was financially supported by the Ministry of Science and Technology (MOST) Key Project (No. 2016YFC0600206) and the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (No. MSFGPMR03-2). We are also grateful to Profs. A.W. Hofmann, Hans Keppler and Dan Smith and an anonymous reviewer who provided valuable comments and suggestions which helped to improve this manuscript significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shao-Yong Jiang.

Additional information

Communicated by Timothy L. Grove.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, DF., Jiang, SY. In situ major and trace element analysis of amphiboles in quartz monzodiorite porphyry from the Tonglvshan Cu–Fe (Au) deposit, Hubei Province, China: insights into magma evolution and related mineralization. Contrib Mineral Petrol 172, 36 (2017). https://doi.org/10.1007/s00410-017-1355-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-017-1355-z

Keywords

Navigation